
Sheaf Theory and Applications

Adam Brown Sebastiano Cultrera di Montesano Ondřej Draganov
Chris Fillmore Teresa Heiss

Spring 2020

These are lecture notes compiled from the course ‘Sheaf Theory and Applications’ taught
by Adam Brown at IST Austria during the Spring semester of 2020. The primary aim of this
course is to provide a self-contained introduction to sheaf cohomology, with an emphasis on
computable examples and applications (when possible).

We take this opportunity to make the obligatory disclaimer that this is a living document,
insofar as we expect to add, revise, and adjust these notes as needed over time. We therefore ask
for patience and forgiveness for any errors in the manuscript. We appreciate if any suggested
changes are addressed to the first author.

Contents

1 Introduction 2
Lecture 1: Introduction and Penrose triangle . 2

2 Category theory 5
Lecture 2: Categories and functors . 5

2.2.1 Category definition. 5
2.2.2 Functors: maps between categories, ‘metamorphisms’ 7

Lecture 3: Natural transformation, equivalence, adjoint pairs 10
2.3.1 Adjoint Pairs . 12

Lecture 4 & 5: Coproducts, Colimits, Products and Limits 13
2.4.1 Coproducts . 13
2.4.2 Colimits . 15
2.5.1 Products . 19
2.5.2 Limits . 21

3 Homological Algebra 24
Lecture 6: Abelian category, exact sequence, derived functor 24
Lecture 7: Concrete computation of resolutions and derived functors 32

4 Sheaf Theory 39
Lecture 8 & 9: Pre(co)sheaves and (co)sheaves . 39

5 Sheaf Cohomology 44
Lecture 10: Morphisms of sheaves, stalk, sheafification 44
Lecture 11: Category of sheaves, sheaf cohomology . 50
Lecture 12: Étale space, local systems, Σ-constructibility 54

5.12.1 Covering spaces and fundamental groups 54
5.12.2 From covering spaces to fiber bundles . 56
5.12.3 Moving towards sheaves. 57
5.12.4 Local systems and constant sheaves . 60
5.12.5 Σ-constructability . 60

Lecture 13: Cohomology . 61
5.13.1 Čech cohomology . 61
5.13.2 Čech cohomology for presheaves . 62
5.13.3 Cellular Sheaf Cohomology . 63

1

6 Notes, remarks 66
6.1 Additional definitions and lemmas . 66

6.1.1 Composing natural transformations . 66
6.2 Examples, Remarks . 67

1 Introduction

Lecture 1: Introduction and Penrose triangle

In these notes we will discuss category theory, sheaf theory, homological algebra, and sheaf
cohomology, all with an emphasis on applications and building intuition from examples.

In this lecture we will give several brief examples, meant to provide some visual (and non-
technical non-jargon filled) intuition for what this course is about (sheaves and sheaf cohomol-
ogy), before we dive into category theory in Lecture 2.

What are sheaves? Sheaves are mathematical objects which are used to study continuous
maps between topological spaces, f ∶ Y → X. We can view these sheaves as data structures on
X which systematically record information about the topological structure of fibers f−1(x) for
each point x ∈X.

Why are sheaves useful in mathematics? Firstly, sheaf theory gives a very general
framework which encompasses many classical techniques in topology and geometry. For example
(perhaps a somewhat trivial example), we can study the (co)homology of a topological space
X through understanding the fiber of the map p ∶ X → {⋆}. As a slight generalization of
this example, we can consider a sheaf which captures the (co)homology of fibers of a Morse
function f ∶ M → R. This example leads quite naturally to the study of persistent homology,
which has seen numerous applications and developments in recent years. Secondly, it is our
opinion that sheaf theory has been useful in mathematics in part because it formalizes an
incredibly intuitive approach to scientific understanding, namely, the process of understanding
global structures through local inquiry.

On a more technical level, sheaves are useful because they allow us to study topology using
algebra. By algebra, we are usually referring to the theory of modules, rings, or groups:

Definition 1.0.1. An abelian group is a pair (G,+) such that

1. G is a set

2. + ∶ G ×G→ G is a map which is

(a) associative, (a + b) + c = a + (b + c)
(b) commutative, a + b = b + a

3. G has an identity (idG ∈ G such that a+ idG = a for all a ∈ G) and inverses (for each a ∈ G,
there exists −a ∈ G such that −a + a = idG).

Example 1.0.2. 1. (Z,+), integers with addition

2. (Z/2Z,+), the set {0,1} with 1 + 1 = 0

3. (U(1) = {eiθ},×)

4. Nonexample: (Z,×)

Let X be a topological space.

Definition 1.0.3. A sheaf on X is a pair (Y, f) such that

1. Y is a topological space (not necessarily Hausdorff)

2. f ∶ Y →X is a local homeomorphism onto X

3. each fiber f−1(x), x ∈X, is endowed with the structure of an abelian group

2

4. the group operations

a+ ∶ f−1(x)→ f−1(x)
b↦ a + b

for each a ∈ f−1(x), and

− ∶ f−1(x)→ f−1(x)
b↦ −b

are continuous maps

Example 1.0.4. Orientation sheaf on S1, ωS1 = (Y, f):

f ∶ S1 ×Z/2Z→ S1

(θ, n)↦ θ

Definition 1.0.5. A section of f ∶ Y →X over U ⊂X is a continuous map s ∶ U → Y such that
f ○ s = idU .

Exercise 1.0.6. How many sections does ωS1 have over S1?

One of the primary tools used in sheaf theory is sheaf cohomology. This cohomology gener-
alizes several classical cohomology theories such as de Rham cohomology and Cech cohomology.
Speaking very generally, sheaf cohomology is an invariant which quantifies obstructions to ex-
tending local sections of a given sheaf to global sections of the sheaf.

Example 1.0.7. In this example we will consider the Penrose triangle as a visualization of
sheaf cohomology, following [Pen92].

We will solve three separate problems related to the above figure.

Exercise 1.0.8. Show that the Penrose triangle is an impossible figure.

Solution: We begin by measuring the distance from the observer to three points on the
figure illustrated below.

3

a
b

c

Let a, b, c denote the distance from the observer to the corresponding marked points on the
figure above. The illustration suggests the following inequalities:

a < b
b < c
c < a.

The figure is an impossible shape because there are no solutions to the above system of inequal-
ities.

Exercise 1.0.9. Give an explicit example of a degree 1 cohomology class of S1 (over R).

Solution: We can use a simplicial structure on S1 to give a concrete description of coho-
mology classes. Let

v1

v2

v3

be a triangulation of S1, consisting of three 0-cells and three 1-cells. Then the cochain complex
is given by

R3 ∂Ð→ R3

(x, y, z)↦ (x − y, y − z, x − z).

A representative of degree 1 cohomology is given by a triple (A,B,C) such that A,B < 0
and C > 0. Let (a, b, c) denote the triple from Exercise 1.0.8. Then (a − b, b − c, a − c) is a
representative of a degree 1 cohomology class of S1.

Exercise 1.0.10. Let ωS1(R) = (Y, f) be the sheaf

Y = S1 ×R
fÐ→ S1,

where R has the discrete topology. Let {U1, U2, U3} denote a cover of S1 by connected, simply
connected open sets with U1 ∩U2 ∩U3 = ∅. Let si be a section of ωS1(R) over Ui.

1. When is there a section s of ωS1(R) over S1 which restricts to si for each i?

2. Suppose si,j is a section of ωS1(R) over Ui∩Uj, for i < j. Are there sections si of ωS1(R)
over Ui for each i such that si,j = si − sj?

4

Solution: A section si over Ui is a constant function

si ∶ Ui → R,

i.e. si ∈ R. There is a section s of ωS1(R) over S1 which restricts to si for each i if and only if
s1 = s2 = s3, i.e. (s1, s2, s3) ∈H0(S1,R).

To answer the second question, we notice that if s1,2 < 0, s2,3 < 0, and s1,3 > 0, then there
is no combination of sections s1, s2, s3 such that the required inequalities are satisfied. In
other words, if s1,2 < 0, s2,3 < 0, and s1,3 > 0, then the triple (s1,2, s2,3, s1,3) is a representative
element of degree 1 sheaf cohomology of the sheaf ωS1(R).

One can notice that the impossibility of the Penrose triangle is closely related to cohomology
classes of the circle, which is in turn closely related to questions about sections of ωS1(R), which
is closely related to the (yet to be defined) sheaf cohomology of ωS1(R). This example is meant
to provide some visual intuition for what sheaf cohomology measures (although we will not
define sheaf cohomology for some time).

We now take a turn toward category theory in order to provide a useful framework for which
to introduce and study sheaf theory and sheaf cohomology.

2 Category theory

Lecture 2: Categories and functors

References. [Cur14, Chapter 1], [Mac98, Chapter 1]

Motivation. Category theory is a useful language to describe sheaves. In mathematics, we
often work with objects that have some “nice” structure-preserving maps between them. For
example

• topological spaces with continuous maps,

• groups with homomorphisms,

• vector spaces with linear maps.

Category theory studies interactions between the objects of a given “branch of mathematics”
just in the language of those maps, without taking into account the structure of the objects
themselves. What do all those situations have in common? We have, for instance, a notion of
being “essentially the same” for two objects in each of the described examples — a homeomor-
phism for topological spaces, an isomorphism for groups, etc. What other similarities can we
find? What are the differences between the interactions of different types of objects?

2.2.1 Category definition.

We can study many areas of mathematics at the same time by studying classes of objects,
and arrows between them. A category is essentially a directed multigraph with an additional
structure of composition for the arrows. But the formal definitions get a bit technical, as the
theory aims to deal with very general situations.

Definition 2.2.1 (Category). A category C is

(1) a class1 of objects O,

(2) a class of arrows (or morphisms) A,

(3) functions dom, codom, id, ○:
1We can imagine ‘set’ here. The problem is, that we want to work with categories where the objects are, e.g.,

all sets — which is itself not a set, but a proper class (see, e.g., Russell’s paradox or Cantor’s paradox). In this
course, we will assume to have a set of allowable sets, a universe which we work with. More general treatment
of this problem is a question of set theory and foundations of mathematics. For more comments on this topic,
see [Mac98, Ch. 1 §6] or [AHS09, §2].

5

• dom ∶ A→ O, (says where an arrow is going from2)

• codom ∶ A→ O, (says where an arrow is going to)

• id ∶ O → A, (assigns a loop arrow as the identity morphism to an object)

• ○ ∶ A ×O A→ A, (the composition rule for the arrows),

where A ×O A = {(g, f) ∈ A×A ∣dom g = codom f} is the set of composable arrows,

such that the following axioms hold:

(a) ● dom(id(C)) = C = codom(id(C)), (identity arrow of C is a loop at C: C id(C))

● dom(g ○ f) = dom f , codom(g ○ f) = codom g,
⎛
⎝

A B C
f

g○f

g ⎞
⎠

for each object C and pair (g, f) ∈ A ×O A,

(b) ● (h ○ g) ○ f = h ○ (g ○ f) (associativity)

● f ○ id(A) = f , id(B) ○ f = f (identity)

for (f, g), (g, h) ∈ A×OA, dom f = A, codom f = B.

That is, these diagrams commute:

A B

C D

f

g○f h○g

h

A A

B
f

id

f

A

B B

f f

id

Some useful notation we will use:

• Ob(C) = O, Mor(C) = A,

• HomC(A,B) = {f ∈ Mor(C) ∣dom f = A, codom f = B},3 (or Hom(A,B) if C is clear)

• idA = id(A) or just id = id(A) if A is clear from the context.

Examples of categories.

1) Category with just one object and one morphism: ● id

2) Let (P,≤) be a partially ordered set. We can take a category P such that ObP = P , and
HomP(a, b) consists of a single arrow if a ≤ b, and is empty otherwise. The composition rule
is clear, as we can always only choose the one arrow between the domain and codomain of
the composition.

a

b c

d

↝

d

b c

a

We see one simple discrete example in the figure above. Another useful example is to view
the real numbers as a poset category — objects are R, and we have one morphism x → y if
x ≤ y, and no morphisms otherwise.

3) Set is the category of sets.

Ob(Set) are (allowable) sets

2Compare to a definition of a quiver. When we have possibly multiple arrows going from one vertex to
another, we can not have the set of edges defined just as pairs of vertices as for classical (di)graphs. We could
not tell two edges with the same source and target apart. One way around this is to define the quiver as a
quadruple — set of vertices, (abstract) set of arrows, and two mappings from arrows to vertices defining the
source and the target of each arrow.

3In literature, the notation C(A,B) is also often used for the collection of all morphisms in category C from
object A to object B.

6

Mor(Set) are maps between (allowable) sets

4) Ab is the category of abelian groups.

Ob(Ab) are abelian groups

Mor(Ab) are group homomorphisms

5) Vectk is the category of vector spaces over a fixed field k.

Ob(Vectk) are vector spaces

Mor(Vectk) are linear maps

We often omit the field k from the notation, and write just Vect. This still denotes category
of vector spaces over some fixed field k.

6) Top is the category of sets.

Ob(Top) are topological spaces

Mor(Top) are continuous maps

7) Suppose that (X,τ) is a topological space. We can define an associated open set category,
C = Open(X,τ), where

Ob(C) = τ are the open sets,

Mor(C) are inclusion maps, i.e., there is a single arrow U V iff U ⊆ V .

In other words, if we look at the poset (τ,⊆), the open set category is a realisation of this
poset as a category, as in example 2).

The terminology of categories is set up so that we naturally interpret objects as sets (possibly
with some structure), and morphisms as maps (preserving the structure). However, as examples
1) and 2) show, this is not necessarily the case.

Terminology. We say a category C is

• large if Ob(C), Mor(C) are proper classes, i.e. not sets,

• small if Ob(C), Mor(C) are sets,

• locally small (sometimes ‘has small Hom-sets’) if HomC(A,B) is a set for each A,B ∈
Ob(C), even if Ob(C) is a proper class itself.

In the examples above, 3, 4, 5, 6) are all large, but locally small; and 1, 2, 7) are small.

2.2.2 Functors: maps between categories, ‘metamorphisms’

A functor is a pair of maps — one for objects, one for morphisms — such that the image of

an arrow A B
f

goes between the images of the objects A,B, and the map on the arrows is
basically a ‘homomorphism’ with respect to the composition.

Definition 2.2.2 (Functor). Suppose that B and C are categories. A functor T ∶ B → C is a
pair (TO, TA), where

TO ∶ Ob(B)Ð→ Ob(C) and

TA ∶ Mor(B)Ð→Mor(C)

are maps which satisfy

• TA(id(B)) = id(TO(B)), (identity goes to identity)

and one of the following two possibilities. Either

• dom(TA(f)) = TO(dom(f)), (A B
f T↝ TO(A) TO(B)TA(f))

7

• codom(TA(f)) = TO(codom(f)),4

• TA(g ○ f) = TA(g) ○ TA(f),
⎛
⎝

TO(A) TO(B) TO(C)TA(f)

TA(g○f)

TA(g)
commutes

⎞
⎠

in which case we call it covariant functor, or

• dom(TA(f)) = TO(codom(f)), (A B
f T↝ TO(A) TO(B)TA(f))

• codom(TA(f)) = TO(dom(f)),

• TA(g ○ f) = TA(f) ○ TA(g),
⎛
⎝

TO(A) TO(B) TO(C)TA(f) TA(g)

TA(g○f)

commutes
⎞
⎠

in which case we call it contravariant5 functor.

Examples of functors.

1) The power set of a set S is ℘(S) = {R ⊆ S}. We can define a functor

P ∶ SetÐ→ Set

S
POz→ ℘(S)

f
POz→ (R ↦ f(R)).

2) The forgetful functor sending a set with a structure to just the set without any additional
structure. For example For ∶ Ab → Set sending a group (G,+) to G, and a homomorphism
f between two groups to the same map f between the underlying sets.

3) Homology of a given fixed dimension is a covariant functor

Hn ∶ TopÐ→Ab

X z→Hn(X)

X
f→ Y z→Hn(X) Hn(Y)Hnf

,

where Hn(X) is the n-th singular homology of X with some fixed coefficients, and Hnf is
the homomorphism induced by f .

4) Cohomology of a given fixed dimension is a contravariant functor

Hn ∶ TopÐ→Ab

X z→Hn(X)

X
f→ Y z→Hn(X) Hn(Y)Hnf

,

where Hn(X) is the n-th singular cohomology of X with some fixed coefficients, and Hnf
is the homomorphism induced by f .

5) Thinking about homology and cohomology, we might also think of the fundamental group.
There is a slight technicality to discuss. For the definition of fundamental group, we need a
topological space together with a fixed point. Therefore, we need to first define a category
of pointed topological spaces pTop. The objects are topological spaces with a base-point,

4We state the conditions on domain and codomain explicitly for clarity of the definition, but they are already
consequences of preserving the identity and preserving the composition. For example for the first one, we have
TA(f) = TA(f ○ iddomf) = TA(f) ○ TA(iddomf) = TA(f) ○ idTO(domf), so in order for those to be composable,
we need to have dom(TA(f)) = codom(idTO(domf)) = TO(dom(f)).

5If we say ‘functor’, we will assume covariance. For more details on covariant vs contravariant, see [Mac98,
Ch. 2 §6]

8

and the morphisms are only those continuous maps that send the base-point of one space to
the base point of the other space. Then we can define a covariant functor

π1 ∶ pTopÐ→Grp

(X,x0)z→ π1(X,x0)

(X,x0)
f→ (Y, y0)z→ π1(X,x0) π1(Y, y0)

π1f
,

where Grp is the category of groups (not necessarily abelian).

6) For a category C, we can define the opposite category Cop by flipping all the arrows:

• Ob(Cop) ∶= Ob(C),
• x→ y ∈ Mor(Cop) iff x← y ∈ Mor(C), that is, HomCop(x, y) ∶= HomC(y, x),
• f ○op g ∶= g ○ f , where ○op is the composition in Cop, and ○ is the composition in C.

Assume that F ∶ B → C is a contravariant functor. Then F defines a covariant functor
F ∶ Bop → C (or also F ∶ B → Cop).

7) The duality in vector spaces is a contravariant functor. For Vect, the category of vector
spaces over a fixed field k, it is defined as follows:

D ∶ VectÐ→Vect

V z→ V ∗ = {linear functions from V to k}

V
γ→W z→ V ∗ W ∗γ∗

, given by γ∗(f) = f ○ γ

8) Important examples of functors are the Hom-functors. Let C be a category, and X be an
object C. We define a covariant functor

Hom(X,−) ∶ C Ð→ Set

V z→ Hom(X,V)

V
f→W z→ Hom(X,V) Hom(X,W)f∗

, given by f∗(ϕ) = f ○ ϕ,

and a contravariant functor

Hom(−,X) ∶ C Ð→ Set

V z→ Hom(V,X)

V
f→W z→ Hom(V,X) Hom(W,X)f∗

, given by f∗(ϕ) = ϕ ○ f.

If a functor F from C to Set can be ‘expressed’ as a Hom-functor, it is called representable
(discussed more in Lecture 3, Yoneda lemma).

Note that the example 7) is a special case of contravariant hom-functor, HomVect(−, k),
where k is the (arithmetic) one-dimensional vector space.

9) Representations of quivers can be viewed as functors. For a quiver Q, we can consider Q
a category ’generated’ by Q. The objects are vertices of Q, and the morphisms Hom(u, v)
are all paths between u and v in Q — including the empty path for Hom(u,u), which is the
identity of u. The composition is the composition of paths.

A representation of Q is a functor to the category of vector spaces, assigning a vector space
to each vertex, and a linear mapping to each arrow. For example, if

Q = ● ● ● ● . . . ,
a representation of Q is

R ∶ QÐ→Vect

vi z→ Vi

vi → vi+1 z→Mi ∶ Vi → Vi+1,

which can be, for example, a persistence module of a simplicial complex with an ordering.
Note that the way we set Q up, we can assign an arbitrary linear map to each arrow of Q
independently.

9

Lecture 3: Natural transformation, equivalence, adjoint pairs

References. [Mac98, Ch. 2 §4, Ch. 3, Ch. 4 §1] [Cur14, Ch. 2 §4, Ch. 3, Ch. 4 §1]

Natural transformations: morphisms between functors, ‘metametamorphisms’

It is useful to have a way to compare functors to each other. We can see natural transformations
between functors as an analogy to homotopy between continuous maps. Having defined functors,
we might think about some notion of equivalence of categories. It is not difficult to see that
functors can be composed, and we can also define an identity functor, where both maps act
identically. Therefore, we could consider two functors going in opposite directions between two
categories, such that their composition is the identity functor. However, we can immediately
see that his notion of equivalence is problematic in several ways. First, it is a bit fishy to talk
about invertible maps between something that can be a class; second, we should not really care
if we throw away some (or all) “isomorphic copies” of an object from a category, which would
cause problems for this notion. A solution to this is very similar to what we do in topology.
The notion of homeomorphism can be too strict to capture the kind of “sameness” we are
looking for, and so we introduce the notion of homotopy — a “map between maps”. And with
homotopy at hand, we can define a notion of equivalence for the spaces too. We do not need
the composition of continuous maps between the spaces to be equal to identity, it is enough for
it to be homotopic to the identity.

Definition 2.3.3 (Natural transformation). Let F,G ∶ C → D be two (covariant) functors. A

natural transformation τ from F to G is a collection of morphisms F (A) G(A)τ(A)
in Mor(D),

one for each object A ∈ Ob(C), such that for every A
f→ B in Mor(C), the following diagram com-

mutes:
F (A) G(A)

F (B) G(B)

τ(A)

F (f) G(f)

τ(B)

,

i.e., τ(B) ○ F (f) = G(f) ○ τ(A).

Example of a natural transformation.
Let R,S ∶ Q → Vect be two representations of a quiver Q: v1 v2 v3. A

natural transformation τ ∶ R → S is a collection of maps between the functors’ images such that
the following diagram commutes:

R(v1) S(v1)

R(v2) S(v2)

R(v3) S(v3)

τ(v1)

τ(v2)

τ(v3)

.

Definition 2.3.4. For any locally small category C, each object c ∈ C defines a functor
HomC(c,−) ∶ C → Set. Functors of this form are called representable functors.

Definition 2.3.5. Let Fun(C,Set) be the category of functors defined by:

Ob(Fun(C,Set)) ∶= {functors F ∶ C → Set}
Mor(Fun(C,Set)) ∶= {natural transformations of the functors}.

This also works for general categories C,D. Now we may wish to relate functors to those
which are representable.

10

Lemma 2.3.6 (Yoneda Lemma). Let C be a locally small category and each F ∈ Ob(Fun(C,Set)),
there is a (natural) bijection 6

HomFun(C,Set)(HomC(c,−), F) ≃ F (c)

Remark. Natural bijection here means the squares induced by morphisms c
fÐ→ c′ in C commute.

Corollary 2.3.7. Let c, c′ be elements in a locally small category C. Then we have the following
natural bijection.

HomFun(C,Set)(HomC(c,−),HomC(c′,−)) ≃ HomC(c′, c)

Therefore we can think of C as being embedded in Fun(C,Set). This corollary, in a sense,
suggests all objects are determined by their relations to other objects.

Example

1. Let C = Open(X) be a category of open sets with inclusion forming the morphisms. This
corollary implies we lose no information about the topology of C by simply considering
the functors on the topology.

2. Consider Z as a category. We can determine a secret object x by playing a game which
asks questions of the form “Is there a morphism x → 10?”. If the answer is “yes” then
we know x ≤ 10. After asking sufficiently many questions we can determine x, illustrating
how objects are determined by morphisms.

Proposition 2.3.8. Suppose S ∶ B → C and T ∶ C → D are functors. Then

(T ○ S)(b) ∶= T (S(b)) for b ∈ Ob(B)
(T ○ S)(b→ b′) ∶= T (S(b→ b′)) for b→ b′ ∈ Mor(B)

defines a functor from B to D.

Proof. First check (T ○ S)(idB) = id(T○S)(B).

T (S(idB)) = T (idS(B))
= idT (S(B))

= id(T○S)(B)

Now check the composition rule. Let f ∶ a→ b and g ∶ b→ c,

(T ○ S)(g ○ f) = T (S(g) ○ S(f))
= T (S(g)) ○ T (S(f))
= (T ○ S)(g) ○ (T ○ S)(f)

So we conclude T ○ S ∶ B → D is a functor.

Definition 2.3.9.

• f ∈ Mor(C) is called an isomorphism if there exists g ∈ Mor(C) such that f ○g = id(dom g)
and g ○ f = id(dom f).

• Two objects a, b ∈ Ob(C) are called isomorphic if there exists an isomorphism f ∶ a→ b.

• Two categories B,C are isomorphic if there exists functors F,G ∶ B → C, such that F ○
G = IdC and G ○ F = IdB. This definition of isomorphism is too rigid to be useful in
distinguishing categories. For this we introduce the following notion.

• A natural transformation τ ∶ F → G that is also an isomorphism (i.e. it has an inverse
natural transformation) in the category Fun(B,C) is called a natural isomorphism.

6Note that some sources instead use the notation Hom(B,C) for the category of functors between two cate-
gories.

11

Definition 2.3.10. Let B,C be two locally small categories and let F ∶ B → C be a functor. If

for all objects a, b ∈ B the map HomB(a, b)
FÐ→ HomC(Fa,Fb)

• is injective F is called full ;

• is surjective F is called faithful ;

• is bijective F is called fully faithful.

Example Let C be a locally small category. The functor

H ∶ C → Fun(C,Set)
c↦ HomC(c,−),

is fully faithful by Corollary 2.3.7. This demonstrates in what sense objects are determined, up
to isomorphism, by the morphisms incident to them.

Definition 2.3.11 (Equivalence of Categories, two versions). Let B,C be categories and let
F ∶ B → C be a functor.

1. We say that B and C are equivalent categories if there also exists a functor G ∶ C → B, and
two natural isomorphisms σ ∶ IdC → F ○G and τ ∶ G○F → IdB; that is, F ○G is isomorphic
to IdC in the category Fun(C,C), and G○F is isomorphic to IdB in the category Fun(B,B).

2. We say that F is an equivalence of categories if F is fully faithful and F is surjective onto
the set of isomorphism classes of objects; that is, for each object c ∈ Ob(C) there exists

b ∈ Ob(B) and an isomorphism Fb
∼Ð→ c.

Exercise 2.3.12. Show that the two versions of the definition above are equivalent.

Example Let B,C be the following two categories

, .

There are four possible functors B FÐ→ C corresponding to the four objects in C and a single

functor C GÐ→ B. Take the functor F mapping B to the first object in C. The horizontal
morphisms and their inverses give natural isomorphisms between the functors F ○G and IdC ,
together with F ○G = IdB this implies that the categories are equivalent.

2.3.1 Adjoint Pairs

An overarching goal in the study of category theory is translating calculations from difficult
categories to simple ones. We will introduce two equivalent definitions of this notion (note the
equivalence is non-obvious).

Definition 2.3.13 (1). Let B,C be categories and F ∶ B → C, G ∶ C → B be functors between
them. We say, (F,G) form an adjoint pair, or equivalently F is a left adjoint of G, or G is right
adjoint of F , if there exist natural transformations σ ∶ IdC → F ○G and τ ∶ G ○ F → IdB such
that the following diagrams commute:

IdC ○ F F ○G ○ F G ○ IdC G ○ F ○G

F ○ IdB, IdB ○G

σ○idF

idF
idF ○τ

idG○σ

idG
τ○idG .

(See additional notes 6.1.1 on Functor compositions)

12

Definition 2.3.14 (2). Let B,C be categories and F ∶ B → C, G ∶ C → B be functors between
them. (F,G) form an adjoint pair if there exist bijections φb,c ∶ HomC(Fb, c) → HomB(b,Gc)
for each pair b ∈ Ob(B), c ∈ Ob(C), such that for all f ∶ b → b′ ∈ Mor(B) and g ∶ c → c′ ∈ Mor(C)
the following diagrams commute,

φb,c ∶ HomC(Fb, c) HomB(b,Gc)

φb,c′ ∶ HomC(Fb, c′) HomB(b,Gc′),

φb,c ∶ HomC(Fb, c) HomB(b,Gc)

φb′,c ∶ HomC(Fb′, c) HomB(b′,Gc).

∼

g○− G(g)○−

∼

∼

∼

−○F (f) −○f

Example The discrete topology functor and the forgetful functor form an adjoint pair (D,For).

For ∶ Top→Set

D ∶ Set→Top

X ↦(X,discrete topology)

Consider X ∈ Ob(Set) and Y ∈ Ob(Top).

HomTop(DX,Y) ≃ HomSet(X,ForY).

Alternatively we could use the map sending the set X to the topological space X with the
trivial topology.

For ∶ Top→Set

E ∶ Set→Top

X ↦(X, trivial topology)

Consider X ∈ Ob(Set) and Y ∈ Ob(Top).

HomTop(EX,Y) ≃ HomSet(X,ForY).

Similarly we can form an adjoint pair between Vect and Set with the functors:

For ∶ Vect→ Set

F ∶ Set→Vect

B ↦ FB,

where FB is the real vector space with basis B. Consider B ∈ Ob(Set) and V ∈ Ob(Vect).

HomVect(FB,V) ≃ HomSet(B,ForV).
So following definition (2), in all instances, (D,For), (E ,For), (F ,For) form adjoint pairs.

Lecture 4 & 5: Coproducts, Colimits, Products and Limits

2.4.1 Coproducts

Motivating Example

Let X be a topological space. The set of open sets in X is a poset, with U ≤ V if and only if
U ⊆ V . We denote by C = Open(X) the associated category and we note that C = Open(X)
has extra structure. Namely, if U,V ∈ Ob(Open(X)), then U ∪ V ∈ Ob(Open(X)).

Question Do other categories have a similar structure?

13

Observations

1. U → U ∪ V ,

2. V → U ∪ V ,

3. If U ⊆W and V ⊆W , then U ∪ V ⊆W .

In other words,

1. ∃ U → U ∪ V ,

2. ∃ V → U ∪ V ,

3. If ∃ U ⊆W and ∃ V ⊆W , then ∃ U ∪ V ⊆W such that

U U ∪ V V

W

∃!

commutes.

Exercise Let C = Vect. Let V,W ∈ Ob(Vect). Find X ∈ Ob(Vect) such that

1. ∃ V →X,

2. ∃ W →X,

3. If ∃ Y → Y and ∃ W → Y , then ∃! X → Y such that

V X W

Y

∃!

commutes.

Solution Take X = V ×W = {(v,w) ∶ v ∈ V,w ∈ W}. In particular, the map V → X sends v
to (v,0), the map W → X sends w to (0,w) and if φv ∶ V → Y , φw ∶ W → Y , then the map
X = V ×W → Y sends (v,w) to φv(v) + φw(w).

Definition 2.4.15 (Coproduct). A coproduct of a, b ∈ Ob(C) is

1. an object a ⊔ b ∈ Ob(C),

2. maps a → a ⊔ b, b → a ⊔ b such that if a → c ∈ Mor(C) and b → c ∈ Mor(C), then
∃!a ⊔ b→ c ∈ Mor(C) such that

a a ⊔ b b

c

∃!

commutes.

Remark. Coproducts may not exist.

Exercise If a ⊔ b exists, then it is unique (up to isomorphism).

14

Coproducts over families

Motivation If {Ui}i∈I ⊆ Ob(Open(X)), then ⋃
i∈I
Ui ∈ Ob(Open(X)).

Definition 2.4.16 (Coproduct over a family of objects). If {ci}i∈I ⊆ Ob(C), then the coproduct

⊔
i∈I
ci is

1. an object in C,

2. maps cj → ⊔
i∈I
ci for each j ∈ I such that if there is an object c′ and maps cj → c′ for each

j ∈ I then ∃! map ⊔
i∈I
ci → c′ such that

⊔
i∈I
ci cj

c′

∃!

∗

∗

commutes for all j ∈ I.

Remark. The maps denoted by ∗ depend on j, while the vertical map is independent of j.

Example 2.4.17. 1. If {Ui}i∈I ⊆ Ob(Open(X)), then ⊔
i∈I
Ui = ⋃

i∈I
Ui ∈ Ob(Open(X)).

2. Let I = N, Vi = k ∈ Ob(Vect). Take Z = k ∈ Ob(Vect) and φi ∶ Vi → Z is the identity
map. Then ⊔

i∈I
Vi = ⊕

i∈I
Vi ∶= {(v1, v2,⋯) ∶ vi = 0 for all but finitely many i ∈ I}.

Remark. One could have first guessed that ∏
i∈I
Vi ∶= {(v1, v2,⋯) ∶ vi ∈ Vi} is the coproduct in

the above. However, this is not the case as the vertical dashed map below

∏
i∈I
Vi Vj

Z

id

given by mapping (v1, v2,⋯) to ∑
i∈I
vi may not converge.

Corollary 2.4.18. ∏
i∈I
Vi = ⊕

i∈I
Vi if I is finite.

2.4.2 Colimits

One way to pick out specific objects in a category C, is to use what is called an indexing
category. For example, let I be the following discrete category:

⋯ .

and let F ∶ I → C be a functor, which picks an object i in the category I and sends it to the
object ci in the category C. Then ⊔

i∈I
ci = ⊔

i∈I
F (i). But what if I had more arrows?

Example 2.4.19. Let I be the discrete category generated by the following diagram (in par-
ticular, all compositions of arrows should also be arrows in I):

1 2 3

Let F ∶ I →Open(X). Then ⊔
I
F (i) = ⋃

I
F (i) = F (3), because F (1) ⊆ F (2) ⊆ F (3).

15

Definition 2.4.20 (Colimit of a functor). Let I be a locally small category and F ∶ I → C be
a functor. The colimit of F , denoted limÐ→F , is

1. an object limÐ→F ∈ C,

2. maps F (i)→ limÐ→F for each i ∈ Ob(I) such that:

• If i→ j ∈ Mor(I), then

F (i) F (j)

limÐ→F

commutes.

• If F (i) → c ∈ Mor(C) for each i ∈ I then there exists a unique map limÐ→F → c such
that:

F (i) F (j)

limÐ→F

c

if

given

if

given

∃!

commutes whenever i→ j ∈ Mor(I).

Example 2.4.21. Let I be the following category.

I =

and let F ∶ I →Open(X). Then limÐ→F = F (3).

Example 2.4.22. Let I be the category of negative integers with a morphisms from a to b if
a is smaller than b. Let F ∶ I →Vect be a functor. Then limÐ→F = F (−1).

Example 2.4.23. Let I = N viewed as a poset category and let F ∶ I →Vect be a functor:

F (I) = V1 V2 V3 ⋯φ12 φ23

Then limÐ→F = ⊕
I
Vi /∼ , where (0,⋯, v

´¹¹¹¹¹¹¸¹¹¹¹¹¶
j

,0,⋯) ∈ ⊕Vi is equivalent to (0,⋯,w
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

k

,0,⋯) ∈ ⊕Vi if there

exists l ∈ I such that

φl−1,l ○ ⋯ ○ φj+1,j+2 ○ φj,j+1(v) = φl−1,l ○ ⋯ ○ φk,k+1(w).

More concretely, let

Vi =
⎧⎪⎪⎨⎪⎪⎩

R if i is even

R⊕R if i is odd

where x ∈ R is mapped to (x,0) ∈ R ⊕ R and (x, y) ∈ R ⊕ R is mapped to (x,0) ∈ R. Note
that ⊕Vi is infinite dimensional, however limÐ→F = R. This is because (x, y) ∼ (x, z) as they
eventually both map to x ∈ R.

Example 2.4.24. Let I be the following category.

c

a b

16

Let F ∶ I →Vect. Then limÐ→F = F (b).

Example 2.4.25. Let I be the following category:

I =
⎧⎪⎪⎨⎪⎪⎩

Ob(I) = ●
Mor(I) = Z with a ○ b = a + b

Let F ∶ I →Vect be a functor defined on the object by F (●) = V and on the morphisms by
F (0) = id ∶ V → V , F (1) =M ∶ V → V . Clearly, F (n) consists on composing M n-times.

Question What is limÐ→F?
Answer Consider the following diagram

V V

limÐ→F

W

M

ψ

φ

ψ

φ

λ

Chasing the arrows we get the following relationship φ ○M = φ, which implies that φ(Mv) −
φ(v) = 0 and finally that φ(Mv − v) = 0. Similarly, we get that ψ(Mv − v) = 0. Let Vn = {w ∈
W ∶ w =Mv − v for some v ∈ V }. Suppose W = V /Vn , with ψ ∶ V → V /Vn the quotient map.
Consider the following subdiagram of the previous diagram:

V

limÐ→F

V /Vn

ψ

φ

λ

Note that since the restriction of φ from V to Vn is zero (i.e. φ(Vn) = 0), the map φ must factor
through V /Vn . By commutativity of the diagram and the surjectivity of ψ, there exist a map

φ′ ∶ V /Vn → limÐ→F , such that λ ○ φ′(w) = w, which implies that the limÐ→F ≃ V /Vn . In different
words, limÐ→F is the set of M -coinvariants of V and φ is the quotient map.

Example 2.4.26. Let I be the following category.

Let F ∶ I →Open(X) be a functor. By applying the functor F , the diagram becomes

U V

W

As usual, let’s consider the limit diagram in the specific setting

W U

limÐ→F

Z

17

Note that U ⊆ limÐ→F and if U ⊆ Z, then U ⊆ limÐ→F ⊆ Z. The same reasoning applies for V .
This implies that limÐ→F = U ∪ V , as U → U ∪ V , V → U ∪ V and if U → Z and V → Z then the
following diagram commutes.

U W V

U ∪ V

Z

Exercise 2.4.27. Let I be the following category.

I = ⋯ .

Let F ∶ I → Vect be a functor with F (i) = Vi for all i. Show that both the coproduct and the
colimit of F are isomorphic to ⊕Vi.

Example 2.4.28. Let I be the following category:

I =
⎧⎪⎪⎨⎪⎪⎩

Ob(I) = ●
Mor(I) = Z with a ○ b = a + b

Let F ∶ I →Vect be a functor defined on the object by F (●) = V and on the morphisms by
F (0) = id ∶ V → V , F (1) =M ∶ V → V . What is limÐ→F?

As per usual, limÐ→F is an object in Vect, such that the following diagram commutes for all
n ∈ Z.

V V

limÐ→F

F (n)

φ φ

If there exists Z ∈ Ob(Vect), with V → Z, then the consider the following diagram.

V U

limÐ→F

Z

F (n)

ψ

φ

ψ

φ

By chasing the arrows in the outermost triangle, we get ψ(v) = ψ(nv) for all n ∈ Z, which
implies that ψ(v) = ψ(w) whenever there exist n ∈ Z such that Mnv = w.

Let’s define an equivalence relation v ∼ w, if there exist n ∈ Z such that Mnv = w and a map
ψ′ ∶ V /∼→ Z such that the following diagram commutes.

V V /∼

Z

q

ψ
ψ′

Guess: limÐ→F = V /∼

Consider the following diagram.

18

V V

limÐ→F

V /∼

F (n)

q

φ

q

φ

λ

By the same argument as above, there exists a φ′ such that φ′ = λ−1, which implies that
limÐ→F = V /∼. Lastly, suppose Vn = {w ∈ V ∶ w = MV − v for some v ∈ V } = im (M − id .
Suppose v ∼ w. Then

v + (Mv − v) + (M2v −Mv) +⋯ + (Mn −Mn−1v) =Mnv = w,

which implies that w ∈ v + Vn. Hence V /∼ ≃ V /Vn , the set of orbits of Z on V .

2.5.1 Products

Motivating example

Let U,V ∈ Ob(Open(X)) and let U ∩ V ∈ Ob(Open(X)). If W ⊆ U and W ⊆ V , then
W ⊆ U ∩ V . The diagrammatic version of the previous statement is the following

W

U U ∩ V V

if
∃!

if

givengiven

Question What is an analogous structure in other categories?

Example 2.5.29. Let X,Y ∈ Ob(Vect(X)). If W ∈ Ob(Vect(X)) maps into X and Y , then

W

X X × Y Y

θyθx

proj.proj.

where W ⇢X × Y is given by mapping w ∈W to (θx(w), θy(w)) ∈X × Y .

Definition 2.5.30 (Direct product). The direct product of a, b ∈ Ob(C), denoted a⊓ b, is

1. an object a⊓ b ∈ Ob(C),

2. maps a ← a⊓ b, b ← a⊓ b such that if a ← c ∈ Mor(C) and b ← c ∈ Mor(C), then
∃!c← a⊓ b ∈ Mor(C) such that

c

a a⊓ b b

∃!

commutes.

Direct product over families

Motivation Let {Ui}i∈I ⊆ Ob(Open(X)). If W ∈ {Ui} for each i ∈ I, then W ∈ ⋂
i∈I
Ui. In

other words, the following diagram

W

∏
i∈I
Ui Uj

19

commutes. Note that if ∣I ∣ =∞, then ⋂
i∈I
Ui might not be open. Hence, infinite direct products

might not exist in Open(X).

Definition 2.5.31 (Direct product over a family of objects). Let {ci}i∈I ⊆ Ob(C). The direct
product ∏

i∈I
ci of {ci} is

1. an object in C,

2. maps ∏
i∈I
ci → cj for each j ∈ I such that if there is an object c′ and maps c′ → cj for each

j ∈ I then ∃! map c′ → ∏
i∈I
ci such that

c′

∏
i∈I
ci cj

if

given

commutes for all j ∈ I.

Example 2.5.32. Let {Vi}i∈N ⊆ Ob(Vect(X)). Suppose Vj = R and consider the following
diagram.

W

∏
N
Vi Vj

λ
ψj

θj

Note that θj must be surjective. One way to see it, is to pick W = Vj and ψj to be the identity
map. This implies that for any arbitrary set {vj ∈ Vj ∶ j ∈ I}, there exist a single element
w ∈ prodVi such that θj(w) = vj , for all j ∈ J .

Guess: ∏Vi = {(v1, v2, v3,⋯) ∶ vi ∈ Vi} =W . We consider the following diagram

W

∏
N
Vi Vj

λ
ψj

θj

where the map ψj maps (v1, v2, v3,⋯) to vj . Now define the map γ ∶ ∏Vi → W by γ(x) =
(θ1(x), θ2(x),⋯). This implies that γ = λ−1 and therefore prodVi = {(v1, v2, v3,⋯).

Corollary 2.5.33. If ∣ I ∣<∞, then ⊔IVi = ⊓I Vi for {Vi} ∈ Ob(Vect(X)).

Note that this is not true for Ob(Open(X)).
Here I is used to index objects in C. The pair ({ci}, I) can be thought of as a discrete

category

I = ⋯ .

with a functor F ∶ I → C, mapping i to Ci. Question: What happens when I has more arrows?

Example 2.5.34. Take I to be the following category

I =

and let F ∶ I →Open(X). Note that ⋂I F (i) = F (1) because F (1) ⊆ F (2) ⊆ F (3).

20

2.5.2 Limits

Definition 2.5.35 (Limit of a functor). Let I be a small category. The limit of a functor
F ∶ I → C is

1. an object lim←ÐF ∈ C,

2. maps lim←ÐF → F (i) for each i ∈ Ob(I) such that:

• If i→ j ∈ Mor(I), then

F (i) F (j)

lim←ÐF

commutes.

• If c → F (i) ∈ Mor(C) for each i ∈ I then there exists a unique map c → lim←ÐF such
that:

F (i) F (j)

lim
←Ð

F

c

given given

if

∃!

if

commutes whenever i→ j ∈ Mor(I).

Example 2.5.36.

Let I be the following category.

a b

c

Let F ∶ I →Vect. Then lim←ÐF = F (b).

Example 2.5.37. Let I be the following category.

a b

c

f

g

Let F ∶ I → Vect. Then lim←ÐF = {(v,w) ∈ F (a)⊕ F (c) ∶ F (f)(v) = F (g)(w) ∈ F (b)}. Visually,
lim←ÐF fills out the commutative diagram

F (a) F (b)

lim←ÐF F (c)

Example 2.5.38. Let U,V ∈ Open(X)op and let F ∶ Open(X)op → Set be a functor. Let I
be the following category.

U V

U ∩ V

Then lim←ÐF = F (U ∪ V) and satisfies the following commutative diagram.

21

lim←ÐF = F (U ∪ V)

F (U) F (V)

F (U ∩ V)

Example 2.5.39. Take I to be the following category

⋯

and let F ∶ I →Vect(X). Then that lim←ÐF = F (1).
Let I be the category where the objects are the non-positive integers with a morphisms from
a to b if a is smaller than b. Let F ∶ I → Vect be a functor. The limit of F is lim←ÐF =
{(⋯, v−2, v−1, v0) ∈∏F (i) ∶ vi = fi+1,i ○ ⋯ ○ fj,j−1(vj)}. Suppose

Fi =
⎧⎪⎪⎨⎪⎪⎩

R if i is odd

R⊕R if i is even

where x ∈ R is mapped to (x,0) ∈ R⊕R and (x, y) ∈ R⊕R is mapped to (x,0) ∈ R. The limit
of F is R.

Example 2.5.40. Let I be the following category:

I =
⎧⎪⎪⎨⎪⎪⎩

Ob(I) = ●
Mor(I) = Z with a ○ b = a + b

Let F ∶ I → Vect be a functor defined on the object by F (●) = V and on the morphisms by
F (0) = id ∶ V → V , F (1) =M ∶ V → V . What is lim←ÐF?

Observation Let’s consider the usual commutative diagram of a limit in our setting.

V V

lim
←Ð

F

z

Mn

φ φ

ψ ψ

We have ψ(z) =Mnψ(z), which implies that ψ(z) belongs to the +1 eigenspace of M .
Guess: lim

←Ð
F = +1 eigenspace of M , which we will denote by E. Consider the following

diagram.

V V

lim
←Ð

F

E

Mn

φ φ

ı

λ

ı

By a similar, note that im(φ) ⊆ E, which implies that φ = λ−1. Therefore,

lim
←Ð

F = {v ∈ V ∶Mv = v}

= +1 eigenspace of Mn

=M invariants of V.

The limit of the functor F is therefore the set of Z-fixed points. On the other hand, the colimit
of the functor F is the set of Z-orbits, but we will omit the proof here.

22

Example 2.5.41. We will conclude this lecture with a slight detour into p-adic numbers. Let
I be the category where ObI = Z>0 and a→ b if b ≤ a. Let p be a prime number, and define the
functor

F ∶ I →Ab

F (i) = Z/piZ
F (n + 1→ n)(x) = x mod pn

We illustrate the image of F as:

⋯→ Z/p3Z
mod p2ÐÐÐÐÐ→ Z/p2Z

mod pÐÐÐÐ→ Z/pZ

Question: lim←ÐF =?
Solution:

lim←ÐF = {(⋯, n3, n2, n1) ∶ ni ∈ Z/piZ such that if j < k then nj ≡ nk mod pj}

For concreteness, let p = 2. Then

(⋯, n3, n2, n1) ∈ lim←ÐF
if n2 ≡ n1 mod 2

n3 ≡ n2 mod 4

etc

So, (⋯,7,3,1) ∈ lim←ÐF and (⋯,3,2,1,0) ∉ lim←ÐF . We can visualize elements of lim←ÐF as a tree:

where the highlighted path corresponds to the element (⋯,6,2,0) in the notation above. We
can also label branches of the tree using infinite strings of 0 and 1:

From this illustration, we can see that lim←ÐF has a natural metric structure which is related to
the node in which two branches connect. Moreover, one can show that lim←ÐF has the structure

of a field, which is called the field of 2-adic numbers (or for general primes, p-adic numbers, Qp).
Unlike fields like Q and R, the p-adic numbers admit several strange properties. For example,
Qp is compact (think of how to prove this using the tree visualization above), and every point
in an interval is the center of the interval. To see the second claim, imagine highlighting all of
the paths in the tree which are a fixed distance away from (⋯,0,0,0) (illustrated below). Do
this again starting with an element which you highlighted (for example (⋯,0,1,0)).

23

3 Homological Algebra

Lecture 6: Abelian category, exact sequence, derived functor

This lecture is about homological algebra, as a motivation for sheaf cohomology. One can think
of homological algebra as the category theory generalization of algebraic topology. Like often
in category theory, we will take a tool that is natural and powerful in one category—in our
case (singular) (co-)homology in the category Open(X) for any topological space X—and we
will express it in terms of category theory only, to be able to generalize it to other categories.
The result is homological algebra. However, the drawback is that the thus defined objects are
not defined constructively but by existence of an object of certain properties. So it is easy to
define, but not easy to compute. For this reason we will later learn about sheaf cohomology,
which is not as general, but by being more specific it will be easier to compute.

References. [KS13, Chapter 1 Section 1–3] and [Rot08, Sections 5.5, 3.1, 3.2, 6.2]

Singular (co-)homology in Open(X)

We first look at singular homology. There we start with the complex

Sn+1 → Sn → ⋅ ⋅ ⋅→ S0

consisting of the free abelian groups Sn generated by all singular simplices, that is all continuous
maps from the standard n-simplex to X. The free abelian groups are connected by boundary
maps. To specify the coefficient group G, we apply the functor −⊗ZG (which replaces the free
abelian groups by a direct sum of copies of G, namely one copy of G per singular simplex):

Sn+1 ⊗Z G→ Sn ⊗Z G→ ⋅ ⋅ ⋅→ S0 ⊗Z G

And we get singular homology with coefficients in G by taking kernels mod images of the this
new chain. To summarize, we start with a chain of maps, then we apply a functor, and we get
homology by kernels mod images. (Note that the functor step could have easily been hidden
by building the coefficient group already into the first step.)

In order to get singular cohomology, we follow the same recipe, but just apply a different
functor, namely Hom(−,G). Note, that Hom(−,G) is contravariant and therefore flips the
direction of the complex:

Hom(Sn+1,G)← Hom(Sn,G)← ⋅ ⋅ ⋅← Hom(S0,G)

Kernels and Images

In order to define homology as kernels mod images, we need to understand what kernels and
images are in terms of category theory.

In the above setting we compute kernels and images in the category Ab. In this category,
we can define the kernel of a group homomorphism f ∶ H → G as ker f = {h ∈H ∣ f(h) = 0},
where 0 is the identity element. To generalize this, we need a category theoretic ‘zero’. This

24

motivates the following definition, which can be seen as an enhancement of the definition of a
locally small category, by asking for the morphisms between two objects to form not only a set,
but even a group.

Definition 3.6.1 (Additive Category). An additive category is a category C such that

1. HomC(a, b) is an abelian group for each a, b ∈ Ob(C) and composition is bilinear:

(f + f ′) ○ (g + g′) = f ○ g + f ′ ○ g + f ○ g′ + f ′ ○ g′.

2. There is a ‘zero object’ 0 ∈ Ob(C) such that HomC(0,0) = 0 is the trivial group.

3. Finite products and coproducts7 (i.e. the indexing set is finite) of objects in C exist.

Exercise 3.6.2. If C is an additive category, then a⊔ b ≃ a⊓ b.

Proof. Plug in the definitions.

Hence, Open(X) is not additive, because coproducts (unions) and products (intersections)
are different. This can alternatively be seen the following way.

Examples of (not) additive categories.

1) Let P be a (non-trivial) poset. Then the category P (in particular Open(X)) is not additive,
because HomP(a, b) = ∅ for a ≰ b and the empty set is not an abelian group because it misses
an identity element.

2) The category Set is not additive, because HomSet(X,∅) = ∅ for any non-empty set X.

3) Ab is an additive category, because group homorphisms can be added element-wise yielding
the structure of an abelian group. Compositions are bilinear where linearity in the right
component comes from the group homomorphism property and linearity in the left compo-
nent comes from the definition through element-wise addition. The zero-object is the trivial
group. Finite products and finite coproducts are both direct sums.

4) Vect is an additive category as well, for the same reasons as Ab.

5) Let C be any category (not necessarily additive). The category Fun(C,Ab) is additive,
because HomFun(F,G), the set of natural transformations between two functors F,G, be-
comes a group through element-wise addition: The sum of τ, σ ∈ HomFun(F,G) is defined
as (τ +σ)(c) = τ(c)+σ(c) ∈ HomAb(F (c),G(c)). The rest of the properties can be checked,
making use of the fact that Ab is an additive category.

Next, we define functors that preserve the extra structure of additive categories.

Definition 3.6.3 (Additive Functor). A functor F ∶ B → C between additive categories is
additive iff

HomB(a, b)
FÐ→ HomC(F (a), F (b))

is a group homomorphism for each pair a, b ∈ Ob(B).

Assume C is an additive category. With this additional structure, we can define the kernel
of a morphism.

Definition 3.6.4 (Kernel). If a
fÐ→ b ∈ Mor(C), then the kernel of f , ker f , is (if it exists)

1. an object ker f ∈ Ob(C)

2. a morphism ker f → a ∈ Mor(C)

such that

7Exercise 3.6.2 suggests that it is enough to require only one of the two to exist. This is indeed the case in
this setting: Requiring that finite products exist will imply that finite coproducts exist and vice versa.

25

a b

ker f

f

0

commutes, and if there exists another object c together with a morphism c→ a that makes

a b

c

f

0

commute, then this morphism factors through ker f , i.e. ∃! c⇢ ker f such that

a b

ker f

c

f

0

∃!
0

commutes.

By dualizing, we can define the cokernel:

Definition 3.6.5 (Cokernel). If a
fÐ→ b ∈ Mor(C), then the cokernel of f , coker f , is (if it

exists)

1. an object coker f ∈ Ob(C)

2. a morphism coker f ← b ∈ Mor(C)

such that

a b

coker f

f

0

commutes, and if there exists another object c together with a morphism c← b that makes

a b

c

f

0

commute, then this morphism factors through coker f , i.e. ∃! c⇠ coker f such that

a b

coker f

c

f

0

0
∃!

commutes.

Intuitively, one can think of the cokernel as the part of the target space that is not reached

by the function. In the category Ab (or Vect), the cokernel of a group homomorphism A
fÐ→ B

is coker f = BÒim f .

Using the definition of kernel and cokernel, we can define image and coimage. Note that in

the category Ab, the coimage of a group homomorphism A
fÐ→ B is coim f = AÒker f .

26

Definition 3.6.6 (Coimage). Let a
fÐ→ b ∈ Mor(C) be a morphism. If ker f exists, let α denote

the morphism ker f
αÐ→ a from the definition of kernel. The coimage of f is coim f ∶= cokerα

(if it exists).

Dualizing yields the definition of image:

Definition 3.6.7 (Image). Let a
fÐ→ b ∈ Mor(C) be a morphism. If coker f exists, let β denote

the morphism coker f
β←Ð b from the definition of cokernel. The image of f is im f = ker β (if

it exists).

Assuming ker f, coker f, im f, coim f exist, we get the following commuting diagram:

ker f a b coker f

coim f im f

α

0

0

f

0

β

0

where the solid arrows come from the definitions of ker f, coker f, im f, coim f . The dashed
diagonal arrow comes from the definition of coim f as cokerα. To induce the horizontal dashed
arrow we first need to prove that γ ∶= β ○ (coim f ⇢ b) is 0. By the commutativity of the
diagram, we see that γ ○ (a→ coim f) = 0, yielding the following commutative diagram:

ker f a

coim f

coker f

α

0

0

0

∃! 0γ

Using the definition of coim f as cokerα, we see that there must be a unique arrow coim f ⇢
coker f which makes the diagram commute. Therefore γ = β ○ (coim f ⇢ b) = 0. Finally, we
obtain the horizontal dashed arrow coim f ⇢ im f from the definition of im f as ker β.

Note that in the the category Ab for a group homomorphism A
fÐ→ B, this horizontal

dashed arrow is the isomorphism between coim f = AÒker f and im f from the first isomorphism

theorem. This motivates the following definition.

Definition 3.6.8 (Abelian Category). An additive category C is abelian iff

1. ker f and coker f exist8 for each f ∈ Mor(C)

2. the canonical morphism coim f ⇢ im f is an ismorphism for each f ∈ Mor(C).

Intuition: “Abelian categories behave like the category of abelian groups.”

Examples of (not) abelian categories.

1) Ab is an abelian category because it is additive (see the 3rd example of (non-)additive

categories), ker f and coker f = BÒim f exist, and the first isomorphism theorem yields an

isomorphism between coim f = AÒker f and im f .

2) Vect is an abelian category as well, for the same reasons as Ab.

8and thus also im f and coim f exist as they are defined as kernels and cokernels

27

3) Let C be any category (not necessarily additive or abelian). The category Fun(C,Ab) is
abelian9, because it is additive (see the 5th example of (non-)additive categories) and the rest
of the properties can be checked, making use of the fact that Ab is an abelian category. In
particular, for any poset P, Fun(P,Ab) is abelian. This motivates sheaf theory: Open(X)
does not have the necessary structure to use algebra, but Fun(Open(X),Ab) does.

4) So far, all examples that were additive were also abelian. However, there exist also examples
of additive categories that are not abelian, for example BanC, the category of complex
Banach spaces with continuous linear maps. However, in order to see why it is not abelian,
we would need functional analysis.

Exact Sequences

For the rest of this lecture, assume C is abelian. This extra structure allows to study complexes
of objects (like when computing (co-)homology).

Definition 3.6.9 (Exact Pair of Composable Morphisms). A pair of composable morphisms

a
fÐ→ b

gÐ→ c in C is exact iff

1. g ○ f = 0

2. The induced morphism im f ⇢ ker g is an isomorphism.10

coker f

a b c

im f ker g

f

0

g

0

where the vertical dashed arrow is induced by the definition of coker f and the fact that
g ○ f = 0; and the horizontal dashed arrow is induced by the definition of ker g and the
fact that the composition of g with the morphism of im f is zero.

Definition 3.6.10 (Exact Sequence). A sequence

. . .Ð→ ai
fiÐ→ ai+1

fi+1Ð→ ai+2 Ð→ . . .

in C is exact iff each pair of composable morphisms ai
fiÐ→ ai+1

fi+1Ð→ ai+2 is exact.

Definition 3.6.11 (Left Exact Functor). An additive functor F ∶ B → C between abelian
categories is left exact iff for each exact sequence11

0Ð→ aÐ→ bÐ→ c

in B, the sequence

0Ð→ F (a)Ð→ F (b)Ð→ F (c)

is exact in C.

Intuition: “Left exact functors preserve injectivity”

9And it is true for any abelian category D, not just Ab itself, that Fun(C,D) is abelian.
10In Vect or Ab these two conditions simplify to one: im f = ker g.
11Sometimes, in the definition of left exactness a 0 is added at the end of the sequence, i.e. left exact iff

0→ a→ b→ c→ 0 exact Ô⇒ 0→ F (a)→ F (b)→ F (c) exact. This definition is however equivalent [?].

28

Definition 3.6.12 (Right Exact Functor). An additive functor F ∶ B → C between abelian
categories is right exact iff for each exact sequence

aÐ→ bÐ→ cÐ→ 0

in B, the sequence

F (a)Ð→ F (b)Ð→ F (c)Ð→ 0

is exact in C.

Intuition: “Right exact functors preserve surjectivity”

Definition 3.6.13 (Exact Functor). An additive functor F ∶ B → C between abelian categories
is exact iff it is right exact and left exact, i.e. iff12 for each exact sequence

0Ð→ aÐ→ bÐ→ cÐ→ 0

in B, the sequence

0Ð→ F (a)Ð→ F (b)Ð→ F (c)Ð→ 0

is exact in C.

From an algebraic perspective, (co-)homology is a way to measure how badly a functor fails
to be exact.

Example 3.6.14. Let C be an abelian category. For each c ∈ Ob(C), the functor

HomC(c,−) ∶ C →Ab

is left exact, but not necessarily right exact. For example for C = Ab, the sequence

0Ð→ Z ×2Ð→ ZÐ→ ZÒ2ZÐ→ 0

is exact, but if we apply HomAb(ZÒ2Z,−) we get (up to isomorphism)

0Ð→ Z ×2Ð→ ZÐ→ ZÒ2ZÐ→ 0

which cannot be exact, because the kernel of the last map is ZÒ2Z but the image of the map

before this is 0, and hence not the same. This shows that HomAb(ZÒ2Z,−) is not right exact.

Using the following definition we can therefore say that ZÒ2Z is not projective.

Definition 3.6.15 (Projective and Injective Objects). An object c ∈ Ob(C) is projective iff
homC(c,−) is exact, and respectively injective iff homC(−, c) is exact.

Definition 3.6.16 (Projective and Injective Resolutions). Let C be an abelian category and
c ∈ Ob(C).

A projective resolution of c is (if it exists) an exact sequence

⋅ ⋅ ⋅→ P2 → P1 → P0 → c→ 0

where Pi is a projective object in C for each i.
An injective resolution of c is (if it exists) an exact sequence

0→ c→ I0 → I1 → I2 → . . .

where Ii is an injective object in C for each i.

It is very difficult to come up with projective or injective resolutions, as it is already difficult
to come up with projective/injective objects. Sheaf theory is useful because we will use topology
to build these sequences instead of having to guess them.

12The implication from right to left is not obvious with the definitions we use. However, with the equivalent
definition of left and right exactness—explained in the footnote in the definition of left exactness—it becomes
obvious.

29

Left Derived Functors

Suppose F ∶ B → C is a right exact additive functor between abelian categories. Suppose each
object in B has a projective resolution.

Then to each object b ∈ Ob(B) we can choose a projective resolution

⋅ ⋅ ⋅→ P2 → P1 → P0 → b→ 0

and apply F to get a sequence

. . .
d3Ð→ F (P2)

d2Ð→ F (P1)
d1Ð→ F (P0)

εÐ→ F (b)→ 0
´¹¹¸¹¹¹¶

exact

The left part of the sequence may no longer be exact because the functor is only right exact.
Now consider the sequence where the object F (b) is removed and only the projective objects

are left

. . .
d3Ð→ F (P2)

d2Ð→ F (P1)
d1Ð→ F (P0)

d0Ð→ 0

Even though the exactness might not be preserved, the property of two consecutive maps
composing to 0 is preserved by any additive functor. We therefore have the induced morphisms
imdn+1 ⇢ ker dn from Definition 3.6.9. These morphisms do not need to be isomorphims, and
intuitively we can measure how far they are from being isomorphisms by their cokernels. We
thus define, the left derived functor of F as

(LnF)(b) ∶= coker(imdn+1 ⇢ ker dn).

Note that in the category Vect or Ab we would have imdn+1 ⊆ ker dn and we would define

(LnF)(b) ∶= ker dnÒimdn+1
. However, in other categories the notion of quotient is not defined,

so we define it in terms of cokernels.
The left derived functor is the analogue of homology.

Example 3.6.17. We prove (L0F)(b) ≃ F (b). The proof holds in general, but is easier to read
in the category C = Ab or C = Vect: As F is right exact we have imd1 = ker ε and ε surjective.
And hence,

(L0F)(b) = ker d0Òimd1
= F (P0)Òimd1

= F (P0)Òker ε ≃ im ε = F (b).

For general abelian categories C the proof follows the same principle but looks more com-
plicated:

(L0F)(b) = coker(imd1 ⇢ ker d0) ≃ cokerd1 ≃ coim ε ≃ im ε ≃ F (b)

where the first isomorphism can be proven using ker d0 ≃ F (P0) (as d0 = 0), the second using
imd1 ≃ ker ε (because F is right exact), the third isomorphism is given by the definition of C
abelian and the last isomorphism is im ε ≃ ker 0 ≃ F (b) (because F is right exact).

The notation of the left derived functor as (LnF)(b) suggests that the constructions does
not depend on the choice of projective resolution. And this is true as the following theorem
shows.

Theorem 3.6.18. With all above assumptions

1. (LnF)(b) does not depend on the choice of projective resolution of b.

2. LnF defines an additive functor13 from B to C.

3. If

0Ð→ aÐ→ bÐ→ cÐ→ 0

is exact in B, then

13We only defined LnF on objects, not on morphsisms. To define LnF on a morphism, one would need to
lift the morphism to the projective resolutions (not necessarily uniquely) which would then induce a morphism
between the corresponding cokernels (which is unique).

30

. . . (LnF)(a) (LnF)(b) (LnF)(c)

(Ln−1F)(a) (Ln−1F)(b) (Ln−1F)(c)

.

(L1F)(a) (L1F)(b) (L1F)(c)

F (a) F (b) F (c) 0

is exact in C.

We will now dualize everything to get right derived functors.

Right Derived Functors

Suppose F ∶ B → C is a left exact additive functor between abelian categories. Suppose each
object in B has an injective resolution.

Then to each object b ∈ Ob(B) we can choose an injective resolution

0→ b→ I0 → I1 → I2 → . . .

and apply F to get a sequence

0Ð→ F (b) ηÐ→ F (I0)
∂1Ð→

´¹¹¸¹¹¹¶
exact

F (I1)
∂2Ð→ F (I2)→ . . .

The right part of the sequence may no longer be exact because the functor is only left exact.
Removing F (b) yields

0
∂0Ð→ F (I0)

∂1Ð→ F (I1)
∂2Ð→ F (I2)→ . . .

Again, the property of two consecutive maps composing to 0 induces the morphisms im∂n−1 ⇢
ker ∂n from Definition 3.6.9. We measure how far they are from being isomorphisms by their

cokernels (in Vect or Ab, by their quotients ker ∂nÒim∂n−1
). We thus define, the right derived

functor of F as

(RnF)(b) ∶= coker(im∂n−1 ⇢ ker ∂n).

The right derived functor is the analogue of cohomology.

Example 3.6.19. (R0F)(b) ≃ F (b) can be proven using the fact that F is left exact.

Again, as the notation (RnF)(b) suggests, the constructions does not depend on the choice
of injective resolution:

Theorem 3.6.20. With all above assumptions

1. RnF defines an additive functor14 from B to C.

2. RnF does not depend on the choice of injective resolution (up to isomorphism).

3. If

0Ð→ aÐ→ bÐ→ cÐ→ 0

is exact in B, then

14We only defined RnF on objects, not on morphsisms. To define RnF on a morphism, one would need to
lift the morphism to the injective resolutions (not necessarily uniquely) which would then induce a morphism
between the corresponding cokernels (which is unique).

31

0 F (a) F (b) F (c)

(R1F)(a) (R1F)(b) (R1F)(c)

.

(Rn−1F)(a) (Rn−1F)(b) (Rn−1F)(c)

(RnF)(a) (RnF)(b) (RnF)(c) . . .

is exact in C.

Lecture 7: Concrete computation of resolutions and derived functors

In this lecture we go through concrete examples of computing cohomology of simplicial com-
plexes using the machinery introduced in the previous lecture.

Example 3.7.21. Throughout the lecture, we will work with a triangle as a simple object to
illustrate all the constructions: let Σ be the simplicial complex as on the figure below (left).
We can also see it as a partially ordered set (right).

v1 v2

v3

e1

e2e3

(a) The simplicial complex Σ

v1 v2 v3

e1 e2e3

(b) Σ as a poset

Choosing the category

To compute cohomology of Σ using the homological algebra, we first need to have an abelian
category in which we have some representation of Σ as an object.15 We can view Σ as its
poset category, but that itself is neither abelian nor does it have Σ as an object in it. We take
Fun(Σ,Ab), which is abelian, as our initial category — this is the first choice we make; it is a
natural example, as such functor category will always be abelian no matter what Σ is.

Now we have two other choices to make. We need to choose

(a) a particular functor from Σ to Ab as the starting object representing Σ,

(b) a functor from Fun(Σ,Ab) to Ab which will yield a right derived functor16 — we will need
this to be an additive left exact functor.

For (a), the simplest possibility is to chose an abelian group G, and ‘send everything to G’:

1G ∶ ΣÐ→Ab

σ z→ G

σ ≤ τ z→ idG

This group G will play the role of the coefficient group in the final cohomology.
For (b), we will look at two options that are always available. Both of these are also additive

and left exact in general, which makes them good candidates to study:

15So that we can compute the injective resolution of that object (or weaker sufficient alternative of that), to
which we then apply a left exact (additive) functor, and obtain the right derived functor, which finally yields (a
version of) the cohomology.

16In the full generality, this could be a functor to any abelian category.

32

• The covariant Hom-functor for a fixed functor H. This is really a family of examples,
since we have a choice of the functor H.

HomFun(Σ,Ab)(H,−) ∶ Fun(Σ,Ab)Ð→Ab

F z→ HomFun(Σ,Ab)(H,F)
η ∶ F ⇒ Gz→ η∗

An object F of Fun(Σ,Ab), which is a functor, is sent to the set of natural transformations
from H to F . This Hom-set has an additional structure of an abelian group inherited from
Ab: for ν,µ ∶H ⇒ F , the addition ν + µ is defined component-wise as (ν + µ)x ∶= νx + µx
for each object x ∈ Ob(Σ), where νx + µx is defined by the abelian group structure of
HomAb(H(x), F (x)).
A morphism of Fun(Σ,Ab), a natural transformation η ∶ F ⇒ G, is sent to a mapping η∗
acting via post-composing. That is, given a natural transformation ν ∶H ⇒ F , we obtain
a natural transformation η∗(ν) ∶= η ○ ν ∶H ⇒ G (see vertical composition in 6.1.1).

• The limit functor.

lim
←Ð

∶ Fun(Σ,Ab)Ð→Ab

F z→ lim
←Ð

F

η ∶ F ⇒ Gz→ lim
←Ð

F
e⇢ lim
←Ð

G

Since Σ is in our case a small category, we can see functors going from it as diagrams, and
we can, therefore, consider limits. The category Ab has all limits, and limits are unique
up to isomorphism, so lim

←Ð
F will always be well defined.

The morphisms are uniquely determined by the universal property of limits. The natural
transformation η ∶ F ⇒ G yields a cone form lim

←Ð
F to the diagram G, which, by the

universal property of lim
←Ð

G, factors through lim
←Ð

G via the unique morphism e.

Sanity check for the construction with the functors introduced above. We do not
need the full resolution to calculate degree zero derived functors — as noted in the previous
lecture, R0F (b) ≅ F (b). Let us check what we get if we choose the functor 1Z ∶ Σ→Ab for (a),
and the limit functor lim

←Ð
∶ Fun(Σ,Ab)Ð→Ab for (b) for two different simplicial complexes Σ.

• First let Σ = be a simplicial complex with just two vertices. Then Σ as poset-category
has only two objects with no morphisms between them. The limit lim

←Ð
1Z is then a product

of two copies of Z:
R0lim

←Ð
1Z ≅ lim

←Ð
1Z = ΠΣZ = Z ×Z = Z⊕Z

• Now let Σ = be a simplicial complex with two connected vertices. The corresponding
poset category is v1 → e← v2, so the limit lim

←Ð
1Z is a pullback:

R0lim
←Ð

1Z ≅ lim
←Ð

1Z = {(n,m) ∈ 1Z(v1)⊕ 1Z(v2) ∣1Z(v1 → e)(n) = 1Z(v2 → e)(m)}

= {(n,m) ∈ Z⊕Z ∣n =m} ≅ Z

We see that we got a free abelian group of the rank the number of connected components, which
is what we would expect the zero cohomology with coefficients in Z to be.

Constructing the resolution

It is in general difficult to find the injective resolution needed for the definition of the right
derived functors. We can see this as analogous to the difficulty of finding some simplicial
structure on a topological space. It turns out that under some additional assumptions, we do
not need to find injective resolution; a certain ‘weaker resolution’ suffices.

33

Back to the triangle Σ. Let us fix some abelian group G as the coefficient group, and let
us fix the functor 1G ∶ Σ→Ab as our representation of Σ in the category Fun(Σ,Ab).

Now we would like to construct an injective resolution of 1G, that is, an exact sequence
0 → 1G → I0 → I1 → . . . , where each Ij is injective. However, the injectivity is difficult to
compute or test algorithmically. Luckily, it turns out that in our more specific setting, it is not
really needed. Together with the exactness, it is enough to assume surjectivity of certain maps
in the construction. We need Ij ’s to be so called flabby (or flasque) sheaves. In particular,
Ij(f) needs to be surjective for every morphism f in Σ for all the functors Ij ∶ Σ → Ab in
the resolution, but there are more conditions — we will not go into details at this point. We
just state here that the following construction, while not necessarily injective, is sufficient for
computing the right derived functor. The construction would be analogous for any simplicial
complex Σ, but for simplicity, we will focus on the triangle.

Constructing I0. We need to define a functor I0, and a natural transformation 1G → I0. We
define I0 as follows:

I0 ∶ ΣÐ→Ab

σ z→⊕
σ≤τ

G

γ ≤ σ z→⊕
γ≤τ

G
ProjÐ→⊕

σ≤τ

G

The direct sum ⊕σ≤τ G goes over all cofaces of σ (in general of arbitrary dimensions). For
example ⊕v1≤τ G =⊕{v1,e1,e3}G = G⊕G⊕G. To define the morphisms, we see the copies of G
as labeled by the simplices, and we just project to the corresponding coordinates. For example
for v1 ≤ e1 we get

I0(v1 ≤ e1) ∶⊕
{v1,e1,e3}

GÐ→ ⊕
{e1}

G

(g1, g2, g3)z→ g2

Note that the projections are all surjective, because if γ ≤ σ, then all the cofaces of σ are also
cofaces of γ.

To define the natural transformation ε ∶ 1G → I0, we need to fill in the εσ’s in the following
diagram(s):

G = 1G(e1) I0(e1) = G

G = 1G(v1) I0(v1) = G
v1
⊕G
e1
⊕G
e3

G = 1G(e3) I0(e3) = G

εe1

εv1

id

id

Proj2

Proj3

εe3
v1 v2

v3

e1

e2e3

We need it to commute, and we need 0 1G I0
ε to be exact, which means that for each

σ ∈ Ob(Σ), the sequence 0 1G(σ) I0(σ)εσ needs to be exact. That is, all εσ’s must be
injective. We define εej ∶= idG for all the edges. For εv1 , we know from the commutativity of
the diagram that g needs to be sent to (?, g, g). The “?” can be chosen arbitrarily — we choose
it as 0, which will be useful later. That is, we define εv1 ∶ g ↦ (0, g, g), and similarly for the
other two vertices.

Constructing I1. Next, we define functor I1, and natural transformation ∂0 ∶ I0 → I1. The
functor I1 will be very similar to I0, but instead of direct sums over all cofaces, we take direct
sums over all strict cofaces:

34

I1 ∶ ΣÐ→Ab

σ z→⊕
σ<τ

G

γ ≤ σ z→⊕
γ<τ

G
ProjÐ→⊕

σ<τ

G

In our situation, this means that vertices will be sent to G⊕G, and edges will be sent to 0.
The morphisms (∂0)σ need to be defined so that we have exactness in I0, i.e., so that their
kernels are equal to the images of εσ.

G = 1G(e1) I0(e1) = G I1(e1) = 0

G = 1G(v1) I0(v1) = G
v1
⊕G
e1
⊕G
e3

I1(v1) = G
e1
⊕G
e3

G = 1G(e3) I0(e3) = G I1(e3) = 0

εe1 (∂0)e1

εv1

id

id

Proj2

Proj3

(∂0)v1

0

0

εe3 (∂0)e3

The morphisms of ∂0 for edges are clearly all 0, since the codomain is 0 – this is also the
only choice to obtain exactness in I0 for the edges.

We need to define (∂0)v1 so that im εv1 = ker (∂0)v1 , i.e., (g1, g2, g3) is sent to 0 iff it is of the
form (0, g, g). One way to do this is to define (∂0)v1 ∶ (g1, g2, g3) ↦ (g1, g3 − g2). We proceed
analogously for v2, v3.

Constructing I2 and further. In our case, we see that ∂0 is actually surjective. This means
that we can define Ik = 0 for all k ≥ 2, and the sequence

0Ð→ 1G
εÐ→ I0

∂0Ð→ I1 Ð→ 0

is exact. This is because we have no faces of dimension higher than one.
In general, we would proceed analogously, defining I2(σ) as the direct sum of as many copies

of G as there are cofaces of σ with dimension higher by at least two. The maximal k for which
Ik is non-zero is the dimension of the simplicial complex. The construction would also work for
CW-complexes or similar nice objects.

Functors from Fun(Σ,Ab) to Ab

With the resolution at hand, we can apply different additive left exact functors, and obtain
possibly different notions of cohomology. Here we go through two examples that ultimately
lead to the same cohomology. We look at representable functor HomFun(1Z,−), and the limit
functor lim

←Ð
, both of which we already briefly introduced before.

The representable functor HomFun(1Z,−). The first functor we look at is

HomFun(Σ,Ab)(1Z,−) ∶ Fun(Σ,Ab)Ð→Ab

F z→ HomFun(Σ,Ab)(1Z, F)
η ∶ F ⇒ Gz→ η∗

Choosing a representable functor is nice, since they are left exact in general. Choosing 1Z for
the domain is nice, since Z is the free Abelian group with one generator. This means that
for any abelian group A, we can see any map Z → A as choosing one element of A – the one
where 1 is sent – and every element of A is represented by a unique such map. This yields a
natural bijection HomAb(Z,A) ≅ A. We can then view an element of HomFun(1Z, F) as picking
an element in each of the groups in the image of F . We apply this functor to the sequence

0→ I0
∂0→ I1 → 0 (recall that we remove 1G from the beginning of the resolution before applying

the functor F).

35

First, we look at what HomFun(1Z, I0) is – what are all the natural transformations η from
1Z to I0? That is, what are all the possibilities to choose one element from each I0(σ) so that
the choices are consistent with all the maps in I0? Let us choose an element (a1, a2, a3) from
the group I0(v1) and (b1, b2, b3) from I0(v2), and look at the following diagrams:

1 (a1, a2, a3)

Z = 1Z(v1) I0(v1) = G
v1
⊕G
e1
⊕G
e3

Z = 1Z(e1) I0(e1) = G

1 a2

ηv1

id Proj2

ηe1

1 (b1, b2, b3)

Z = 1Z(v2) I0(v2) = G
v1
⊕G
e1
⊕G
e2

Z = 1Z(e1) I0(e1) = G

1 b2

ηv2

id Proj2

ηe1

Firstly, we see that choosing an element from I0(v1) already determines the choice of the
element from I0(e1) – this is the case for any simplex and its coface. Secondly, we see that we
can not choose the elements from I0(v1) and I0(v2) independently – from those two particular
diagrams, we see that a2 must be the same as b2. Altogether, we can independently choose
six elements of G, one for each simplex. Schematically, the natural transformation for a choice
(gv1 , gv2 , gv3 , ge1 , ge2 , ge3) looks as follows:

v1 v2 v3

e1 e2e3
η
↝

ge1 ge3 ge2

(gv1 , ge1 , ge3) (gv2 , ge1 , ge2) (gv3 , ge2 , ge3)

Therefore, we have
HomFun(1Z, I0) = {maps from Σ to G} ≅ G6.

Now let us look at HomFun(1Z, I1). Things are a bit easier now, since I1(ej) = 0 for all the
edges, and all the maps in I1 are 0. This means that we have no dependencies between our
choices of elements from I1(v1), I1(v2), and I1(v3). Each of these is G⊕G, so together we can
again choose six elements (gv1,e1 , gv1,e3 , gv2,e1 , gv2,e2 , gv3,e2 , gv3,e3) ∈ G6:

v1 v2 v3

e1 e2e3
η
↝

0 0 0

(gv1,e1 , gv1,e3) (gv2,e1 , gv2,e2) (gv3,e2 , gv3,e3)

Hence, we have HomFun(1Z, I1) ≅ G6.
Lastly, we need to derive the map HomFun(1Z, I0) → HomFun(1Z, I1). But this is just

post-composition with ∂0. If we choose elements from groups in I0, we just map them by
the corresponding maps of ∂0, and get choices of elements from groups in I1. We get a map
G6 → G6. Abusing the notation, we denote it by ∂0. We have

∂0 ∶ G6 → G6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

gv1
gv2
gv3
ge1
ge2
ge3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

gv1
ge3 − ge1
gv2

ge2 − ge1
gv3

ge3 − ge2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

36

which, abusing the notation a bit more, we can actually express nicely as a coboundary matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
0 0 0 −1 0 1
0 1 0 0 0 0
0 0 0 −1 1 0
0 0 1 0 0 0
0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Finally, we have
R0HomFun(1Z,1G) ≅ ker∂0 ≅ G,

and

R1HomFun(1Z,1G) ≅ G6
/

im∂0
≅ G,

which coincides with H0(Σ;G) and H1(Σ;G), respectively.

Exercise 3.7.22. Is it true that

RnHomFun(1Z,−)(1G) ≅Hn(Σ;G)
(= RnHomFun(1Z,1G))

The limit functor. The second functor we apply to our resolution is the limit functor

lim
←Ð

∶ Fun(Σ,Ab)Ð→Ab

F z→ lim
←Ð

F

η ∶ F ⇒ Gz→ lim
←Ð

F
e⇢ lim
←Ð

G

Let us first look at the case of just one edge. We get the following diagram:

Ĩ0(e1)

Ĩ0(v1) Ĩ0(v2)

lim
←Ð

Ĩ0

G

G⊕G⊕G G⊕G⊕G

lim
←Ð

Ĩ0

Proj2 Proj2

The limit is a pullback of groups

lim
←Ð

Ĩ0 = {(g1, . . . , g6) ∈ G6 ∣ g2 = g4} ≅ G5,

where the dotted lines are projections to first three and last three coordinates, respectively.
For the whole triangle, the situation is similar. To obtain the limit, we start with the direct

sum I0(v1)⊕ I0(v2)⊕ I0(v3), and take the subgroup on which all the projections commute.

I0(e1) I0(e3) I0(e2)

I0(v1) I0(v2) I0(v3)

lim
←Ð

I0

G G G

G⊕G⊕G G⊕G⊕G G⊕G⊕G

lim
←Ð

I0

That is, we get

lim
←Ð

I0 = {(g1, . . . , g9) ∈ G9 ∣ g2 = g8, g3 = g5, g4 = g9} ≅ G6.

37

For I1 the situation is even simpler, as we have just zeros on the edges, so there are no
commutativity constrains in the diagram:

I1(e1) I1(e3) I1(e2)

I1(v1) I1(v2) I1(v3)

lim
←Ð

I1

0 0 0

G⊕G G⊕G G⊕G

lim
←Ð

I1

The limit ends up being just the product

lim
←Ð

I1 = I1(v1)⊕ I1(v2)⊕ I1(v3) ≅ G6.

The morphism lim
←Ð

∂0 is the unique map making the following diagram commute:

I0(v1) I1(v1)

I0(v2) I1(v2)

I0(v3) I1(v3)

lim
←Ð

I0 lim
←Ð

I1

(∂0)v1

(∂0)v2

(∂0)v3

lim
←Ð

∂0

But elements in lim
←Ð

I0 and lim
←Ð

I1 are exactly the choices we could make for the elements of

I0-groups and I1-groups in the previous Hom-functor example. And the map induced by ∂0

acts exactly the same17. Therefore, we get

R0lim
←Ð

(1G) ≅ G,

R1lim
←Ð

(1G) ≅ G,

as before.

Exercise 3.7.23. Is it true that

Rnlim
←Ð

(1G) ≅Hn(Σ;G)?

Projective resolutions in Fun(Σ,Ab)?

People mostly stick with cohomology rather than homology. The reason is that while Fun(Σ,Ab)
always has injective resolutions, it might not have projective resolutions (we might need to look
toward relatively pathological topological objects without simplicial/CW structure to get a
counterexample). We can get a homological-type construction for a simplicial complex by tak-
ing a projective resolution of 1Z, and then computing the right derived functor of −⊗ZG (known
in algebraic contexts as Tor).

17This is a more general phenomenon in Ab. As Fun(Σ,Ab) is an abelian category, the set HomFun(1Z, F)
has a structure of abelian group for any functor F , and, therefore, can be seen as an object of Ab. Given any
diagram D ∶ I →Ab, it is not difficult to see that lim

←Ð
D ≅ HomFun(1Z,D).

38

4 Sheaf Theory

Lecture 8 & 9: Pre(co)sheaves and (co)sheaves

In this lecture we present several definitions for sheaves and cosheaves and show their equiva-
lence under certain assumptions. Each definition has a corresponding problem instance in which
it is the most effective formulation. However, we begin by defining presheaves and precosheaves.

Definition 4.9.1. A presheaf on X with values in a category C is a contravariant functor
F ∶ Open(X)→ C.

Definition 4.9.2. A precosheaf on X with values in a category C is a covariant functor F̂ ∶
Open(X)→ C.

Examples of presheaves and precosheaves.

1. Consider the functor taking open sets on X to functions into some group, in our case R
(we could additionally consider continuous, constant, e.t.c). This is a group with addition
obtained by simply adding together the function outputs.

F ∶ Open(X)→Ab

U ↦ {f ∶ U → R}

Now consider a morphism in Open(X) (i.e. U ⊆ V)

F (U → V) ∶ F (V)→ F (U),

here F (U → V)(f) is simply the restriction of f from V to U . Note that the morphism’s
direction is flipped so F is contravariant and also a presheaf.

2. We can also consider homology as a presheaf.

F̂ ∶ Open(X)→Ab

U ↦H0(U ;Z)
(U → V)↦ (H0(U ;Z)→H0(V ;Z))

This time the functor is covariant so homology is a precosheaf.

3. Let X be the simple topological space depicted below, with Open(X), the its correspond-
ing poset category also depicted below. Now let us define the contravariant functor F as

U ∪ V =X

U V

U ∩ V

below. Each open set is mapped to a one dimensional vector space k and the whole space
X is mapped to an arbitrary vector space V. The diagram below show the effect of F on
the morphisms of Open(X), where ϕ is some linear functional.

Then it is clear F forms a presheaf on X with values in V. Furthermore, if F (U), F (V)
and F (U ∩ V) are not sufficient to completely determine F (X) then F is just a presheaf
and not also a sheaf.

We now turn our attention to defining sheaves and cosheaves distinctly from presheaves and
precosheaves.

39

F ∶ Open(X)→Vect

U ↦ k

V ↦ k

U ∩ V ↦ k

X ↦ V

V

k k

k

ϕ

ϕ

ϕ

id id

Definition 4.9.3. Let {Ui}i∈I = U ⊆ Open(X) be a a collection of open sets. The nerve,
N (U) ∶= {J finite subset of I ∶ ∩j∈J ≠ ∅} is a poset category, such that J → K if J ⊂ K for
J,K ∈ N (U)

There is a natural functor:

iU ∶ N (U)op Open(X)

J ⋂J Uj

K ⋂K Uk

, if J ⊂K,

or alternatively,

iU ∶ N (U) Open(X)op

J ⋂J Uj

K ⋂K Uk

, if J ⊂K.

Here one of the categories, N (U) or Open(X) must be flipped to its opposite category so
that the functor remains covariant.

Exercise 4.9.4.

1. Show that lim
←Ð

iop
U

= ∪i∈IUi.

2. Show that lim
Ð→

iU = ∪i∈IUi.

Definition 4.9.5. A sheaf F on X with values in a complete category C is a contravariant
functor F ∶ Open(X) → C such that for each collection of open sets U = {Ui}i∈I ⊆ Open(X)
the canonical map F (lim

←Ð
iop
U

)→ lim
←Ð

(F ○ iop
U

) is an isomorphism.

From Exercise 4.9.4 we know that this limit is just the union, so we can think about sheaves
as functors taking unions to limits.

Definition 4.9.6. A cosheaf F̂ on X with values in a cocomplete category C is a covariant
functor F̂ ∶ Open(X) → C such that for each collection of open sets U = {Ui}i∈I ⊆ Open(X)
the canonical map F̂ (lim

Ð→
iU)→ lim

Ð→
(F̂ ○ iU) is an isomorphism.

40

Similarly to sheaves a cosheaf then can be thought of as a functor which commutes with
colimits or which takes unions to colimits.

Definition 4.9.7. A sheaf F on X with values in a complete category C is a contravariant
functor F ∶ Open(X) → C such that for each collection of open sets U = {Ui}i∈I ⊆ Open(X)
which is stable under finite intersections (i.e. Ui ∩ Uj ∈ U for all i, j ∈ I), the canonical map
lim←Ð
U

F ← F (∪iUi), is an isomorphism.

Here it is beneficial to consider U as a “subcategory” of Open(X) (see the diagram below)
and F as a functor on this subcategory, FU ∶ U → C such that lim←Ð

U

F = lim
←Ð

FU .

U1 U2 U3

U1 ∩U2 U2 ∩U3

Definition 4.9.8. A cosheaf F̂ on X with values in a in a complete category C is a covariant
functor F̂ ∶ Open(X) → C such that for each collection of open sets U = {Ui}i∈I ⊆ Open(X)
which is stable under finite intersections, the canonical map limÐ→

U

F̂ → F̂ (∪iUi), is an isomor-

phism.

Note: The following sheaf and cosheaf definitions are valid for any categories with an “ele-
ment” operation, not just Set (e.g. Ab,Vect).

Definition 4.9.9. A sheaf F onX with values in Set is a contravariant functor F ∶ Open(X)→
Set such that if {Ui}i∈I ⊆ Open(X), si ∈ F (Ui), and F (Ui∩Uj → Ui)(si) = F (Ui∩Uj → Uj)(sj)
for all i, j ∈ I, then there exists a unique s ∈ F (∪iUi) such that F (∪iUi → Uj)(s) = sj for all j.

This definition says if pieces of information from open sets Ui, Uj agree on pairwise intersec-
tions then there exists a unique element in the functor applied to the union of all open sets such
that restricting to any open sets gives back the initial information. Or more intuitively, if local
sets are glued consistently we can recover the initial data from a unique piece of information
taken globally.

Definition 4.9.10. A cosheaf F̂ on X with values in Set is a covariant functor F̂ ∶ Open(X)→
Set such that for each collection of open sets U = {Ui}i∈I ⊆ Open(X), if si,j ∈ F̂ (Ui∩Uj) (i < j),
and F̂ (Ui ∩ Uj → Ui)(si,j) = F̂ (Ui ∩ Uj → Uk)(si,k) for all j, k ∈ I, then there exists a unique

s ∈ F̂ (∪iUi) such that F̂ (Ui ∩Uj → ∪iUi)(si,j) = s for all i < j.
Definition 4.9.11. A sheaf F onX with values in Ab is a contravariant functor F ∶ Open(X)→
Ab such that for any collection of open sets U = {Ui}i∈I ⊆ Open(X), the sequence

0Ð→ F (∪iUi)Ð→∏
i

F (Ui)
d0Ð→∏

i<j

F (Ui ∩Uj),

where
d0((0, . . . ,0, si,0, . . .)) =∑

i<j

F (Ui ∩Uj → Ui)(si) −∑
k<i

F (Ui ∩Uk → Ui)(si),

is exact.

Note: The degree map d0 is exactly the degree map form Čech cohomology.

Definition 4.9.12. A cosheaf F on X with values in Ab is a covariant functor F̂ ∶ Open(X)→
Ab such that for any collection of open sets U = {Ui}i∈I ⊆ Open(X), the sequence

⊕i<j F̂ (Ui ∩Uj)
∂1Ð→ ⊕iF̂ (Ui)Ð→ F̂ (∪iUi)Ð→ 0,

where
∂1((0, . . . ,0, si,j ,0, . . .)) = F̂ (Ui ∩Uj → Ui)(si,j) − F̂ (Ui ∩Uk → Ui)(si,j),

is exact.

41

Proposition 4.9.13. Given a presheaf F on X with values in Ab and a collection {Ui}i∈I =
U ⊆ Open(X), the following are equivalent:

1. lim←ÐÐÐ
N(U)

F
∼←Ð F (∪iUi)

2. If ∃si ∈ F (Ui) s.t. F (Ui ∩ Uj → Ui)(si) = F (Ui ∩ Uj → Uj)(sj) then ∃!s ∈ F (∪Ui) s.t.
F (Uj → ∪Ui)(s) = sj

3. 0→ F (∪iUi)
εÐ→∏i F (Ui)

d0Ð→∏i<j F (Ui ∩Uj) is exact.

Proof. (2) Ô⇒ (3)
Suppose (s1, . . .) ∈ ker d0, then for every pair of elements the difference,

F (Ui ∩Uj → Ui)(si) − F (Ui ∩Uj → Uj)(sj) = 0, ∀i < j,

and hence they must be equal.
Now from (2) we know there exists a unique global element s ∈ F (∪iUi), that restricts to each
local element, or explicitly,

F (Uj → Ui)(s) = sj , ∀j.
So s must be the preimage of each element (s1, s2, . . .) = ε(s). Which is to say, ker d0 ⊆ im ε.

Now since F is a functor it must preserve compositions of morphisms, in particular, F ((Uj →
Ui) ○ (Uk ∩Uj → Uj)) = F (Uk ∩Uk → Ui). Which implies im ε ⊆ ker d0.

Finally since s was a unique preimage, the map ε must have bee injective. So we conclude
the sequence is exact.

(3) Ô⇒ (1)
We begin with the diagram from implied by Definition 4.9.5, below left, where we have restric-
tion maps εk ∶ F (∪iUi) → F (Uk) and definitive limit object as we are in a complete category.
Our goal is to show that the unique map to the limit is in fact an isomorphism. By rearranging
the diagram and mapping into products rather than distinct open sets, as in below right, we
obtain the sequence from (3) which we assume to be exact. Since the sequence is exact, ε is

F (Uk) F (Uk ∩Uj)

lim←ÐÐÐ
N(U)

F

F (⋃iUi)

↺

↺

ϕk

εk

∃!

F (∪iUi) lim
←Ð

F ∏k F (Uk) ∏k<j F (Uk ∩Uj)

ε

↺

λ ϕ d0

injective and therefore so is λ. Then by the commutivity of the left triangle we know im ε ⊆ imϕ
and additionally by the commutivity of the upper triangle we know imϕ ⊆ ker d0. Combining
this with the exactness of the sequence we obtain:

im ε ⊆ imϕ ⊆ ker d0 = im ε.

Now suppose ϕ were not injective, then it would be possible to define multiple λ maps main-
taining the continuity of the diagram, one for each element mapped to the same element by
ϕ, however this violates the uniqueness of λ so ϕ must be injective. Finally commutivity of
the triangle and injectivity of ϕ implies λ must also be surjective and therefore an isomorphism.

42

(1) Ô⇒ (2)
We want to show if ∃si ∈ F (Ui) s.t. F (Ui → Ui∩Uj)(si) = F (Uj → Ui∩Uj)(sj) then ∃!s ∈ F (∪Ui)
s.t. F (Uj → ∪Ui)(s) = sj . By (1) we have equivalence of the union and the limit then by the
definition of the limit we can complete the commutative diagram below with the free group
generated by an element (s1, s2, . . .) ∈∏i F (Ui). Since the map from the free group to the limit

F (Uk) F (Uk ∩Uj)

lim
←Ð

F

Z⟨(s1, s2, . . .)⟩
∃!

sk F (Uk ∩Uj → Uk)(sk) = F (Uk ∩Uj → Uj)(sj)

s = λ(s1, . . .)

a ⋅ (s1, s2, . . .)

is unique there must be a unique s ∈ lim
←Ð

F . Now by the commutivity of the diagram when we

restrict F (Uj → ∪iUi)(s) we get sj as required.

Proposition 4.9.14. Suppose F is a sheaf on X with values in Ab. Then F (∅) = ⟨∣⟩ = 0.

Proof. Let U = ∅. Then
0→ F (∅)→∏

∅

→∏
∅

,

is exact. But how do we make sense of this sequence? ∏∅ ∈ Ab is an object such that for
each object G ∈ Ob(Ab), there is a unique map:

∏∅

G

!

There is only one possible map satisfying this diagram for all abelian groups, namely the zero
map. So ∏∅ = 0 and F (∅) = 0.

Exercise 4.9.15.

1. Suppose F is a sheaf on X with values in Set. Show that F (∅) is a set with one element.

2. What is F̂ (∅) for a cosheaf on X with values in Ab and Set?

Examples of sheaves and cosheaves.

1. Let X = [0,1] ⊂ R. Define a functor,

F ∶ Open(X)→Ab

∅↦ 0

U ↦ Z

(U → V)↦ (F (U) id←Ð F (V))

Let U = [0,1/4] and V = [3/4,1]. So by applying F we obtain the diagram:

43

F (U) = Z F (V) = Z

F (U ∩ V) = 0

0 0

This is exactly the pushout diagram where the restriction maps are 0. So we are looking
at pairs of integers which agree under the zero map, i.e. any pair. So then lim←ÐÐÐ

N(U)

F =

Z⊕Z ≠ Z. Therefore F is merely a presheaf and not a sheaf.

2. Suppose f ∶ E → B is a continuous map (inspired by vector bundles). The presheaf on B
with values in Set defined by:

F (U) = {s ∶ U → E∣f ○ s = idU},

is a sheaf. This sheaf is called the sheaf of sections of f .

3. Suppose f ∶ E → B is a continuous map (think vector bundle). The precosheaf on B with
values in Set defined by

F̂ (U) = π0(f−1(U)) = set of path connected components of f−1(U)

is a cosheaf. This cosheaf is called the Reeb sheaf of f .

5 Sheaf Cohomology

Lecture 10: Morphisms of sheaves, stalk, sheafification

The aim of this lecture is to show that the category of sheaves Sh(X) is an abelian category
although this is not obvious. Once it is an abelian category we can apply homological algebra
(see Section 3) to it.

References. [Cur14, Chapter 2 §5] and the lecture notes of the class taught by Pramod Achar
https://www.math.lsu.edu/~pramod/tc/07s-7280/

18

Morphisms of Sheaves

In the following, the paths between sheaves and cosheaves diverge. Therefore the theorems
about sheaves and cosheaves become less and less analoguous. We therefore decide for the
more straight-forward of the two, sheaves, and discuss only them. Unless stated otherwise,
sheaves will have values in Ab19.

To turn sheaves into a category, we need morphisms between sheaves.

Definition 5.10.1 (Morphism of Sheaves). A morphism between sheaves on X with values in
Ab is a natural transformation between the sheaves viewed as functors. In other words, a mor-
phism ϕ ∶ F → G of sheaves on X is a collection of group homomorphisms {ϕU ∣U ∈ Open(X)}
such that the diagram

F (U) G(U)

F (V) G(V)

ϕU

ϕV

commutes for each pair V ⊆ U
18The notes by Pramod Achar cover more material than we will here. However, the first 2–3 lecture notes

cover similar topics as we do.
19Some of the statements would be generalizable to settings without abelian group structure, but for the sake

of easyness, we nevertheless restrict ourselves to abelian groups.

44

https://www.math.lsu.edu/~pramod/tc/07s-7280/

Let Sh(X) be the category of sheaves on X with values in Ab. Definition 5.10.1 can be
alternatively phrased using the forgetful functor from sheaves to presheaves

For ∶ Sh(X)→ Fun(Openop(X),Ab)

by defining

HomSh(X)(F,G) ∶= HomFun(Openop(X),Ab)(ForF,ForG).

Kernels and Images of Morphisms of Sheaves: the näıve approach

To define sheaf cohomology using homological algebra (see Section 3) we need the category of
sheaves to be abelian. The 3rd example of abelian categories (see Definition 3.6.8) shows that
the category of presheaves Fun(Openop(X),Ab) is abelian. However, this does not guarantee
that the subcategory of sheaves is abelian as well. We therefore need to check that kernels and
cokernels (and hence images and coimages) exist in Sh(X). Let ϕ ∶ F → G be a morphism
between sheaves, i.e. a natural transformation. The näıve approach fails to provide a definition
of the image of a morphism ϕ between sheaves. However, the näıve approach does work for
defining kernels in the category of sheaves. To begin, we recall the definition of kernels and
images in the category of presheaves:

ker ϕ is the contravariant functor mapping an open set U to the abelian group

(ker ϕ)(U) ∶= ker ϕU = ker(F (U) ϕUÐ→ G(U))
and mapping a morphism U ⊆ V to the induced (see Exercise 5.10.2) group homomorphism

(ker ϕ)(U)⇢ (ker ϕ)(V)
imϕ is the contravariant functor mapping an open set U to the abelian group

(imϕ)(U) ∶= imϕU = im(F (U) ϕUÐ→ G(U))
and mapping a morphism U ⊆ V to the induced (see Exercise 5.10.2) group homomorphism

(imϕ)(U)⇢ (imϕ)(V)

Exercise 5.10.2. Show that for U ⊆ V the definition of (ker ϕ)(V) as the kernel of ϕV indeed
induces a unique morphism (ker ϕ)(U) ⇢ (ker ϕ)(V), and that the definition of (imϕ)(V) as
the kernel of the cokernel-map of ϕV indeed induces a unique morphism (imϕ)(U)⇢ (imϕ)(V)
with the help of the induced map between the cokernels.

If ker ϕ and imϕ fulfilled the sheaf condition of Definition 4.9.11 we could use these two
definitions to show existence of kernels and images in the category of sheaves.

Proposition 5.10.3. Let ϕ ∶ F → G be a morphism of sheaves. Then ker ϕ is a sheaf.

Proof. A diagram chasing proof (left to the reader) in the diagram

0 (ker ϕ)(⋃iUi) ∏i(ker ϕ)(Ui) ∏i<j(ker ϕ)(Ui ∩Uj)

0 F (⋃iUi) ∏i F (Ui) ∏i<j F (Ui ∩Uj)

0 G(⋃iUi) ∏iG(Ui) ∏i<j G(Ui ∩Uj)

α β

shows that ker ϕ fulfills the sheaf condition of Definition 4.9.11 and therefore is a sheaf.

The above proposition fails for imϕ. Indeed imϕ does not necessarily need to be a sheaf
(see Section 6.2 for an example). There is still hope, however, that images of morphisms exist
in Sh(X). We only need to define the image of a morphism differently. For this, we try to find
out what went wrong with imϕ: How can a presheaf fail to be a sheaf?

To answer this question we use the Set-definition of sheaves (Definition 4.9.9). The state-
ment “then there exists a unique s ∈ F (∪iUi)” from this definition can either fail to be true
by lacking existence (“not enough global information”) or by lacking uniqueness (“too much
global information”).

45

Example 5.10.4 (Non-existence of sections). For X = U ⊔ T and Open(X) = {∅, U, T,X},
consider the presheaf F mapping U,T,X to a vector space V and identity maps between them
and mapping ∅ to 0. This presheaf fails to be a sheaf, because for w ∈ V = F (U) and z ∈ V =
F (T) with w ≠ z, there exists no v ∈ V = F (X) that maps both to w and to z, although w and
z both map to 0 ∈ 0 = F (∅). In other words, F (X) is not large enough.

Example 5.10.5 (Non-uniqueness of sections). For X = U ∪T with U ∩T ≠ ∅ and Open(X) =
{∅, U ∩ T,U,T,X}, consider the presheaf F mapping U ∩ T,U,T to a field (and thus a vector
space) k and identity maps between them, mapping X to a larger vector space V ≠ k over k
with a linear map ϕ ∶ V → k such that F (U ⊂ X) = F (T ⊂ X) = F (U ∩ T ⊂ X) = ϕ. This
presheaf fails to be a sheaf, because for 0 ∈ k = F (U ∩T) = F (U) = F (T) there is more than one
v ∈ kerϕ ⊂ F (X) with ϕ(v) = 0 and therefore more than one section over X which restricts to
0 over U , T , and U ∩ T . In other words, F (X) is too large.

Both these problems are global problems, not local problems. This motivates the procedure
of sheafification: taking a presheaf that is not a sheaf, extracting the local information and
composing the local information smartly to form exactly the right amount of global information,
yielding a sheaf. We will then define the image of ϕ as the sheafification of the above defined
presheaf imϕ.

Sheafification

The local information of a presheaf is its stalk:

Definition 5.10.6 (Stalk). The stalk of presheaf F (with values in a category C which is
complete and cocomplete, like Set or Ab) at x ∈X is

Fx ∶= lim
Ð→
U∋x

F (U)

where the colimit is taken over all open sets U which contain x.

Example 5.10.7. Suppose X is a metric space. Let x ∈ B 1
n
(x) ⊂ B 1

n−1
(x) ⊂ ⋅ ⋅ ⋅ ⊂ B1 (x) be

the sequence of open balls around x with decreasing radius. Let I be the functor from the poset
category (N,≤) to Openop(X), defined by

I ∶ N Openop(X)

n B 1
n
(x)

m B 1
m

(x)

Composing I with the presheaf F ∶ Openop(X)→Ab, yields

F ○ I ∶ N Ab

n F (B 1
n
(x)) =∶ Gn

The colimit of this functor, Example 2.4.23, is

lim
Ð→
U∋x

F (U) = lim
Ð→

F ○ I = ⊕
n∈N

GnÒ∼

where the equivalence relation is given by (0,⋯,0, gl,0⋯) ∼ (0,⋯,0, hk,0⋯) if there exists m
such that ((F ○ I)(l ≤m)) (gl) = ((F ○ I)(k ≤m)) (hk)20.

20The equivalence relation here is defined only on a set of basis vectors for ⊕Gn and should then be extended
linearly to a relation on the entire vector space.

46

Remark. The idea of Definition 5.10.6 is that F is only defined on open sets and not on the
singleton {x}, we therefore take the colimit over all neighborhoods. The same idea can be
applied to any subset Y ⊆X. Consider

FY ∶= lim
Ð→

U⊇Y open

F (U)

as the ‘data’ which F assigns to Y .

The following proposition describes how the global information connects with the local
information.

Definition 5.10.8. Let F be a presheaf on X with values in Set. For U ∈ Open(X) and
x ∈ U , let

F (U)⇢ Fx

be the unique morphism given from the definition of colimits (recall Fx ∶= lim
Ð→
V ∋x

F (V)). Define

sx to be the image of s ∈ F (U) under this map.

Unpacking Definition 5.10.6 for the special case of C = Ab—generalizing Example 5.10.7—
yields the following equivalent definition of the stalk.

Definition 5.10.9 (Stalk in Ab). Let F be a presheaf on X with values in Ab. The stalk of
F at x ∈X, Fx, is the abelian group consisting of equivalence classes of pairs

(U, s) ∶ U ∋ x open and s ∈ F (U)

where (U, s) ∼ (V, t) if ∃W ⊆ U ∩ V open such that x ∈W and F (W → U)(s) = F (W → V)(t).
The group operation is defined by (U, s)+(V, t) ∶= (U ∩V,F (U ∩V → U)(s)+F (U ∩V → V)(t)).

Using this definition, the universal map from Definition 5.10.8 is given by

F (U)→ Fx

s↦ sx ∶= [(U, s)]∼

Also the global information about morphisms connects to the local information. Suppose
γ ∶ F → G is a morphism of presheaves (hence a natural transformation). Then γ induces a
morphism of stalks for each x ∈X:

γx ∶ Fx → Gx

[(U, s)]∼ ↦ [(U,γU(s))]∼

where γU ∶ F (U) → G(U) is the group homomorphism from the definition of natural transfor-
mations.

Exercise 5.10.10. Show that γx is indeed well-defined by showing

(U, s) ∼F (V, t) Ô⇒ (U,γU(s)) ∼G (V, γV (t))

Finally, we can compose the local information of a presheaf to form global information.

Definition 5.10.11 (Sheafification). Let F be a presheaf on X with values in Set. The
sheafification of F , denoted F +, is defined to be

F +(U) = {s ∶ U → ⊔
x∈U

Fx ∣
∀x ∈ U ∶ s(x) ∈ Fx and
∀x ∈ U ∃V with x ∈ V ⊆ U ∃t ∈ F (V) ∀y ∈ V ∶ s(y) = ty

} .

for each open set U ⊂ X, where ⊔ denotes the disjoint union. In other words, s chooses for
every point x ∈ U an element s(x) in its stalk Fx in a locally constant / locally coherent way:
in small enough neighborhoods V the chosen stalk element s(y) will always be induced by the
same element t.

47

To turn F + into a functor we define F + of an inclusion V ⊆ U to be the group homomorphism
⋅∣V ∶ F +(U)→ F +(V) that maps a function s to its restriction s∣V .

Exercise 5.10.12. Prove that F + is a sheaf for every presheaf F .

Definition 5.10.11 can be rephrased using the following notation for Cartesian products:
Suppose s ∈∏x∈U Fx. Let πx(s) denote the projection of s onto Fx.

Definition 5.10.13 (Alternative Definition of Sheafification). Let F be a presheaf on X with
values in Ab. The sheafification of F , denoted F +, is defined to be

F +(U) = {s ∈ ∏
x∈U

Fx ∣∀x ∈ U ∃V with x ∈ V ⊆ U ∃t ∈ F (V) ∀y ∈ V ∶ πy(s) = ty}

for each open set U ⊂X.

Exercise 5.10.14. Prove that (.)+ ∶ Fun(Openop(X),Set) → Sh(X) is a functor. For this,
define γ+ of a morphism (i.e. natural transformation) γ between two presheaves F and G as
γ+U ∶ F +(U)→ G+(U), s↦ (∏x∈U γx) (s).

To show that this functor (.)+ is a left adjoint of the forgetful functor (see Theorem 5.10.17),
we first need a Lemma.

Lemma 5.10.15. If F is a sheaf, then F ≃ (For(F))+.

Proof. Exercise to the reader.

In other words, sheafification does not change sheaves.

Lemma 5.10.16. If F is a presheaf, then ∀x ∈X

Fx ≃ (F +)x

Proof. Exercise to the reader.

In other words, sheafification does not change the local information.

Theorem 5.10.17. The functor (.)+ ∶ Fun(Openop(X),Ab)→ Sh(X) is a left adjoint of the
forgetful functor For ∶ Sh(X)→ Fun(Openop(X),Set). I.e.

HomSh(X)(F +,G) ≃ HomFun(Openop(X),Set)(F,For(G))

is natural.

Proof. The natural bijection is given by γ+ ↔ γ. The remainder of the proof can be found in
the literature.

Definition of Images of Morphisms of Sheaves

Finally, we can define the image of a morphism as the sheafification of the attempt im(For(γ))
we tried before, which turned out not to be a sheaf.

Definition 5.10.18 (Image of a Morphism of Sheaves). Let γ ∶ F → G be a morphism of
sheaves. Define

imγ ∶= (im(For(γ)))+

Moreover, one can show that there is a natural inclusion of sheaves: imγ → G.

Definition 5.10.19. Let γ ∶ F → G be a morphism of sheaves.

• γ is injective if ker γ = 0

• γ is surjective if imγ ≅ G

The fact that the definition of image needs sheafification (contrarily to the definition of
kernel which already is a sheaf) is a hint that surjectivity of morphisms between sheaves will
be more complicated than injectivity.

48

Proposition 5.10.20. γ is injective iff γ(U) ∶ F (U)→ G(U) is injective for all U ∈ Open(X).

Proof. Follows from the definition of ker γ.

This is not true for surjectivity! It is not enough to check only the open sets, but checking
the colimits of the open sets, i.e. the stalks, is enough.

Proposition 5.10.21. A morphism γ ∶ F → G of sheaves is

• surjective iff γx ∶ Fx → Gx is surjective ∀x ∈X

• injective iff γx ∶ Fx → Gx is injective ∀x ∈X

• isomorphism iff γx ∶ Fx → Gx is isomorphism ∀x ∈X

Proof. Exercise to the reader.

Here, it is important that the isomorphisms between the stalks are all induced by the
same morphism γ ∶ F → G. If each of the stalks Fx was isomorphic to Gx with individual
isomorphisms, this would not be enough to conclude that F and G are isomorphic. In other
words, for F,G ∈ Sh(X), we have F ≃ G in Sh(X) implies Fx ≃ Gx in Ab, ∀x ∈ X (see
Proposition 5.10.21). But there are counter-examples for the implication in the other direction.
We will give such an example now. Another example can be constructed from the sections of the
coverings of Example 5.12.43.1 and Example 5.12.43.2 (see Example 5.12.51.3). The intuition
to find a counter-example is: The stalks give the local information in each point, but not how
the local information of one point relates to (or ‘is glued to’) the local information of another
point.

Example 5.10.22. Suppose X = U ∪ V has 5 open sets: Open(X) = {X,U,V,W ∶= U ∩ V,∅}

Define

F (Z) = Z ∀ nonempty Z ∈ Open(X),
F (∅) = 0,

and F (Z1 → Z2) = (id)Z ∀ nonempty Zi ∈ Open(X)

X = U ∪ V

U V

W = U ∩ V

Z

Z Z

Z

id

id

id

id id

Exercise 5.10.23. Show that F is a sheaf, for example by using the Set-definition of sheaves
(Definition 4.9.9)

Next, we compute the stalks. Let x ∈ U ∖W . Then

Fx = lim
Ð→
Z∋x

F (Z)

49

is the colimit of the finite diagram F (X) → F (U) which has a terminal object, namely F (U).
Therefore

Fx = lim
Ð→
Z∋x

F (Z) = F (U) = Z.

Let x ∈W , then the stalk Fx is the colimit of the finite diagram F (X)→ F (U)→ F (W) which
has F (W) = Z as its terminal object. Hence, again Fx = Z.

In general, if there are only finitely many open set, the stalk Fx is the functor applied to
the smallest open set containing x, which is in this example always Z.

Now we will construct a different sheaf, with the same stalks.

Example 5.10.24. Let X be the same topological space as before. Define

G(Z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z Z = U,V, or W

Z⊕Z Z =X
0 Z = ∅.

G(X → U) = proj1

G(X → V) = proj2

G(U →W) = 0

G(V →W) = 0

X = U ∪ V

U V

W = U ∩ V

Z⊕Z

Z Z

Z

proj1

0

proj2

0 0

Exercise 5.10.25. Show that G is a sheaf, for example by using the Set-definition of sheaves
(Definition 4.9.9)

Again we compute the stalks by

Gx = G(smallest open neighborhood containing x) = Z ∀x ∈X.

And we observe that we get the same stalks as in Example 5.10.22, although the sheaves F and
G are not isomorphic (because F (X) and G(X) are not isomorphic).

Lecture 11: Category of sheaves, sheaf cohomology

References. [Cur14, Chapter 2] and [Bre12, Chapter 1 Section 3]21

As a first example of sheafification we sheafify the constant presheaf, which failed to be a
sheaf (see the 1st example after the definitions of sheaves and cosheaves).

Example 5.11.26. Let I = [0,1] ⊂ R with the euclidean topology inherited from R, let G be
a non-trivial abelian group and

F ∶ Openop(I)→Ab

U ↦ G

(U → V)↦ idG.

21Bredon uses Definition 1.0.3 to define sheaves. We have not had time to show that this is equivalent to our
definition (see Definitions 4.9.5, 4.9.7, 4.9.9 and 4.9.11), but it is.

50

F is not a sheaf (because firstly, F (∅) = G ≠ 0 and after correcting this, two disconnected sets
would need to get mapped to two copies of G in order to get the sheaf property (see the 1st
example after the definitions of sheaves and cosheaves)). We compute its sheafification F +. For
computing,

F +(U) = {s ∶ U → ⊔
x∈U

Fx ∣
∀x ∈ U ∶ s(x) ∈ Fx and
∀x ∈ U ∃V with x ∈ V ⊆ U ∃t ∈ F (V) ∀y ∈ V ∶ s(y) = ty

} ,

we first need to compute the stalks ∀x ∈ I using Definition 5.10.9:

Fx = {(U, s) ∣U ∋ x open and s ∈ F (U)}Ò∼ (1)

= {(U, g) ∣U ∋ x open and g ∈ G}Ò∼ (2)

where (U, g) ∼ (V,h) iff ∃W ⊆ U ∩V neighborhood of x s.t. F (U →W)(g) = F (V →W)(h). As
the morphisms F (U →W) and F (V →W) are the identity and as U ∩V is a suitable candidate
for W , this is equivalent to: (U, g) ∼ (V,h) iff g = h. This thus yields:

Fx ≅ G ∀x ∈ I.

Secondly, we need to compute the induced maps F (U)→ Fx, see Definition 5.10.8.

G = F (U) Fx G

g gx ∶= [(U, g)]∼ g,

≅

≅

yielding again the identity map on G. In other words, through the identification of Fx with G,
gx gets identified with g. We can therefore simplify F +(U) to

F +(U) = {s ∶ U → G ∣∀x ∈ U ∃V with x ∈ V ⊆ U ∃t ∈ F (V) ∀y ∈ V ∶ s(y) = t}
= {s ∶ U → G ∣∀x ∈ U ∃V with x ∈ V ⊆ U ∶ s∣V is constant}
= {s ∶ U → G ∣ s is locally constant} .

We observe

• A set of connected open neighborhoods, {Vx}x∈U , form an open cover of U .

• If Vx ∩ Vy ≠ ∅ then s(x) = s(y) ∈ G,

and infer that s ∈ F +(U) is completely determined by a choice of t ∈ G for each connected
component of U . Another way to say this, is

F +(U) = {s ∶ U → G ∣ s continuous} ,

where G has the discrete topology.

We introduced sheafification to define the image of a morphsim because existence of images
is necessary for a category to be abelian.

Theorem 5.11.27. The category of sheaves on X with values in Ab, Sh(X), is an abelian
category. Moreover, each sheaf F ∈ Sh(X) has an injective resolution22

Proof. The proof can be read up in the references.

This is what we need in order to use homological algebra (see Section 3). Applying homo-
logical algebra to sheaves is called sheaf cohomology. The roadmap is the following:

Given a left exact (additive) functor23

Λ ∶ Sh(X)→Ab

22But surjective resolutions do not need to exist. This is the reason why in the following we will work with
right derived functors instead of left derived functors. And this explains why homology and sheaves do not work
together well, but cohomology and sheaves do.

23In the following, we will denote sheaves with capital letters and functors from Sh(X) to Ab with capital
Greek letters.

51

and a sheaf F ∈ Sh(X), we “can”24 find an injective resolution of F :

0→ F → I0 → I1 → . . .

and we “can” compute

0
∂0→ Λ(I0)

∂1→ Λ(I1)→ ⋅ ⋅ ⋅ ∈ Ab

and we can define the cohomology of X with coefficients in the sheaf F as the right derived
functor of Λ, which is defined as the cohomology of the above sequence, i.e.

Hi
Λ(X;F) ∶= (RnΛ)(F) ∶= ker ∂nÒim∂n−1

∈ Ab.

Next, we explore which left exact additive functors Λ ∶ Sh(X) → Ab to use and how to
find injective resolutions. One idea for a functor Λ is to use a representable functor Λ ∶=
HomSh(X)(F,−), represented by a convenient sheaf F ∈ Sh(X). A good canditate for F is the
sheaf from Example 5.11.26.

Definition 5.11.28 (Constant Sheaf). The constant sheaf, 1G, is the sheafification of the
functor which maps each open set to the abelian group G and each morphism to idG. As
Example 5.11.26 has shown, this is equivalent to defining:

1G ∶= {continous functions from U to G}

where G has the discrete topology.

Example 5.11.29.

HomSh(X)(F,−) ∶ Sh(X)→Ab

is additive and left exact. Specifically, we will focus on the case where F = 1G:

HomSh(X)(1G,−).

Another idea for a functor Λ ∶ Sh(X) → Ab is the functor that evaluates a given sheaf on
the open set consisting of the whole space.

Definition 5.11.30 (Global Section Functor). Given a sheaf F ∈ Sh(X), define

Γ(X;F) ∶= F (X) ∈ Ab.

Γ(X;−) ∶ Sh(X)→Ab is called the global sections functor.

Exercise 5.11.31. Prove that Γ(X;−) is a additive and left exact functor.

A third idea for getting a functor Λ ∶ Sh(X) → Ab is to push-forward a sheaf F ∈ Sh(X)
to a sheaf in Sh({p}) where the only information the sheaf gives is the abelian group to which
it is evaluated for the set {p}. We therefore define push-forwards and pull-backs.

Definition 5.11.32 (push-forward). Suppose f ∶X → Y is a continuous map.
If F is a sheaf on X, define the direct image of F along f (or push-forward sheaf) by

f∗(F) ∶= the sheaf which maps

U ⊆ Y ↦ F (f−1(U))

Similarly, we would like to define the pull-back sheaf of a sheaf G ∈ Sh(X) along f as
mapping an open set U ⊆X to G(f(U)). However, f(U) does not need to be open. Therefore,
we need to apply the same trick as in the definition of stalk, namely using the colimit over
all open sets containing f(U) instead. Furthermore, the thus defined presheaf is not a sheaf.
Hence we need to sheafify it:

24An injective resolution needs to exist but usually one doesn’t know how to find it.

52

Definition 5.11.33 (pull-back). Suppose f ∶X → Y is a continuous map.
If G is a sheaf on Y , define the inverse image of G along f (or pull-back sheaf) by

f∗(G) ∶= the sheafification of the presheaf which maps

U ⊆X ↦ lim
Ð→

V ⊇f(U)

G(V)

Example 5.11.34. Let f ∶ X → {p}, where {p} denotes the topological space consisting of
only one point. Let G be an abelian group. Let 1 be the sheaf in Sh({p}) with 1({p}) = G and
1(∅) = 0. Then f∗1 = 1G, yielding yet another equivalent way to define the constant sheaf, see
Definition 5.11.28.

Theorem 5.11.35. Let f ∶X → Y be a continuous map. Then

f∗ ∶ Sh(X)→ Sh(Y) and

f∗ ∶ Sh(Y)→ Sh(X)

are functors. Moreover,

• f∗ is left exact,

• f∗ is exact,

• (f∗, f∗) form an adjoint pair.

Proof. The proof can be found in the references.

Adjoint pairs can be used to translate problems from complicated categories to easier cate-
gories. The adjoint pair (f∗, f∗) can translate problems from Sh(X), X being a large topolog-
ical space, to Sh(Y), Y being a small topological space. In the following, we will do this for Y
being the topological space, {{p}}.

Example 5.11.36. Let f ∶ X → {p} be the constant map. We can push-forward a sheaf on
X to a sheaf on {p}. The category Sh({p}) is equivalent to the category Ab because the
only information that a sheaf on {p} caries is the abelian group that is its global section. We
therefore get a functor from Sh(X) to Ab by composing

Sh(X) f∗Ð→ Sh({p}) Γ({p};−)Ð→ Ab.

Exercise 5.11.37. Γ(X;−) = Γ({p}; f∗(−)) as functors from Sh(X) to Ab. Moreover, Γ({p}; f∗(−))
is additive and left exact.

As the functors are equal, their right derived functors are equal:

(RiΓ(X;−)) (F) = (RiΓ({p}; f∗(−))) (F).

Notation: As a shorthand for Γ({p}; f∗(F)) = (f∗(F)) ({p}) one can write f ∗ (F) because
sheaves on {p} can only be non-trivially evaluated on {p}. Thus, as a shorthand for Γ({p}; f∗(−))
one can write f∗, yielding the shorter statement:

(RiΓ(X;−)) (F) = (Rif∗) (F).

Proposition 5.11.38. Let F ∈ Sh(X). Then

(RiHomSh(X)(1Z,−)) (F) ≃ (RiΓ(X;−)) (F).

Proof. Should be checked by the reader.

Together, this shows that all three ideas for left exact additive functors Λ ∶ Sh(X) → Ab
yield the same right derived functor, when choosing G ∶= Z, the free abelian group. We can
therefore use any of the three for the following definition.

Definition 5.11.39 (Sheaf Cohomology). Define

Hi(X;F) ∶=Hi
Γ(X;−)(X;F) = (RiΓ(X;−)) (F)

53

The following example shows that sheaf cohomology of the constant sheaf agrees with the
traditional singular cohomology with coefficients in a group G, under mild assumptions on X
(for example if X is homotopy equivalent to a CW complex).

Example 5.11.40. If X is a manifold (or, more generally, homotopy equivalent to a CW
complex), then Hi(X;1G) =Hi(X;G).

Recall that Hi(X;1G) = (RiΓ(X;−)) (1G) = (RiΓ({p}; f∗(−))) (1G) is the right derived
functor of pushing forward to a point and taking global sections of the point. Similarly, we can
push-forward to the slightly larger space R.

Example 5.11.41. Suppose f ∶ M → R is a Morse function (i.e. a function to the real line
that is differentialable and has separated critical values). Then, for a sheaf F ∈ Sh(M) on M ,
f∗(F) ∈ Sh(R) is a sheaf on R. For p ∈ R and ιp ∶ {p} ↪ R, (ι∗p ○ f∗)(F) ∈ Sh({p}) is a sheaf
on a point and can therefore be represented by its global section Γ({p}; (ι∗p ○ f∗)(F)) ∈ Ab, in
short notation, (ι∗p ○ f∗)(F) ∈ Ab. As the functor Γ({p}; (ι∗p ○ f∗), in short, ι∗p ○ f∗, is left exact

and additive, we can build its right derived functor RiΓ({p}; (ι∗p ○ f∗)), in short Ri(ι∗p ○ f∗).
Let 1G ∈ Sh(M) be the constant sheaf on M . Then,

(Ri(ι∗p ○ f∗)) (1G) ≃Hi(f−1({p});G) (3)

This reminds of (level set) persistent cohomology and hence raises a question: Can we think
about (level set) persistent (co-)homology as a sheaf on R? And if so, can this be generalized
to Rn instead of R, yielding new insights on the decomposables of multi-parameter persistence?

Lecture 12: Étale space, local systems, Σ-constructibility

The étalé perspective of sheaf theory:

• Covering spaces and fundamental groups

• Fiber bundles étalé spaces, and constant sheaves

• Local systems and representations of π1(X;x0)

Motivation: We want to compute cohomology, but using the general definitions, we have too
many open sets to consider. If we want to actually compute homology, we need to throw away
‘redundant’ open sets. In order to make this approach concrete, we will take a detour through
the theory of covering spaces and the classification of local systems.

5.12.1 Covering spaces and fundamental groups

We review a classical algebraic topology result drawing a relation between covering spaces and
the fundamental group. More details can be found, e.g., in Hatcher’s Algebraic Topology.

Definition 5.12.42 (Covering space). A covering space of a topological space X is a topological
space X̃ together with a continuous map

p ∶ X̃ →X,

satisfying the following condition: for each x ∈ X there exists a neighbourhood U of x, whose
preimage can be written as a disjoint union of open sets in X̃,

p−1(U) =⊔
i∈I

Vi,

such that the restrictions p↾Vi ∶ Vi → U are homeomorphisms for all i ∈ I.
Note: We allow the union to be empty, so we do not require p to be surjective; this is how it is
defined in Hatcher’s book.

Example 5.12.43. Let X = S1 be the one dimensional circle. We give three examples of
covering spaces.

1. X̃ = S1 ⊔S1 with p acting ‘identically’ on each of the components. We can see this as two
circles directly above our space X with p being the projection down.

54

Definition .

A covering space of a space X is a space I with a continuous map

p: I→ X
such that

for each see X there is a neighborhood U of x

such that p
- ' fuk !¥ Vi , Vi open in 5

and ply : Vi → U is a homeomorphism fitI.

Examples .
① yes '

us
'

, X -- S
'

OO- O
② I - S' X- s'

④ - O
③ E- IR X- s

'

All:-O
Definition

.
The set of all homotopy classes Lf] of loops file , it → X at the

basepoint xo is the fundamental group t.lx.co)

r
'

n.Example . @MYit.cx.x
.) - z

a

2. Instead of taking two circles, we can take just one circle, and deform it so that it goes
around twice above X; we get X̃ = S1, and p sending s(α) to s(2α), where s ∶ [0,2π]→ S1

is the parametrization of S1 by angle.

Definition .

A covering space of a space X is a space I with a continuous map

p: I→ X
such that

for each see X there is a neighborhood U of x

such that p
- ' fuk !¥ Vi , Vi open in 5

and ply : Vi → U is a homeomorphism fitI.

Examples .
① yes '

us
'

, X -- S
'

OO- O
② I - S' X- s'

④ - O
③ E- IR X- s

'

All:-O
Definition

.
The set of all homotopy classes Lf] of loops file , it → X at the

basepoint xo is the fundamental group t.lx.co)

r
'

n.Example . @MYit.cx.x
.) - z

a

3. We can take a spiral above our circle X, with projection down. We can realize this as
X̃ = R, and p ∶ x↦ s(2πx), for s the same as in the previous example.

Definition .

A covering space of a space X is a space I with a continuous map

p: I→ X
such that

for each see X there is a neighborhood U of x

such that p
- ' fuk !¥ Vi , Vi open in 5

and ply : Vi → U is a homeomorphism fitI.

Examples .
① yes '

us
'

, X -- S
'

OO- O
② I - S' X- s'

④ - O
③ E- IR X- s

'

All:-O
Definition

.
The set of all homotopy classes Lf] of loops file , it → X at the

basepoint xo is the fundamental group t.lx.co)

r
'

n.Example . @MYit.cx.x
.) - z

a

Definition 5.12.44 (Fundamental group). The fundamental group of a topological space X
with a basepoint x0, denoted by π1(X;x0), is the set of all homotopy classes [f] of loops
f ∶ [0,1]→X at the basepoint x0, with composition as the binary operation.

Example 5.12.45. π(S1, x0) = Z for any x0 ∈ S1.

There is a nice correspondence between the topological concept of covering spaces, and the
algebraic concept of fundamental group.

Theorem 5.12.46 (Classification of covering spaces, Hatcher pg. 67). Suppose that X is a
path-connected25, locally path-connected26, and semilocally simply connected27 topological space.
Then there is a bijection between path-connected covering spaces p ∶ X̃ →X (up to isomorphism)
and subgroups of the fundamental group π1(X,x0) (up to conjugacy).

Example 5.12.47. What are the subgroups of Z corresponding to the three examples in
Example 5.12.43?

1. The covering space there is not connected. It is a disjoint union of two connected com-
ponents. The theorem classifies those separately. One component is just S1 with p being
the identity, which corresponds to the whole fundamental group Z on the algebraic side.

2. This covering corresponds to the subgroup 2Z ⊆ Z.

3. The universal covering corresponds to the trivial subgroup 0 ⊆ Z
25There is a continuous path between every pair of points.
26Each point has an arbitrarily small neighbourhood that is path-connectd. More precisely, for every x ∈ X

and open neighbourhood U of x, there exists an open neighbourhood V ⊆ U of x which is path-connected.
[Hatcher, pg 62]

27Each point x ∈ X has a neighbourhood U such that the map π1(U,x) → π1(X,x) induced by inclusion is
trivial, i.e., sends every loop to the trivial loop. [Hatcher, pg 63]

55

5.12.2 From covering spaces to fiber bundles

Let us look at the local condition in the definition of a covering space of X (Def. 5.12.42). For
each point x ∈ X, there needs to be small enough neighbourhood U so that p−1(U) = ⊔i∈I Vi
is a disjoint union, where each Vi is homeomorphic to U via p. This condition is equivalent to
saying that ⊔i∈I Vi is homeomorphic to U × I where we take the discrete topology on the index
set I. But what if we took some different topology on I? This is exactly what gets us to the
notion of a fiber bundle.

Definition 5.12.48 (Fiber bundle). A fiber bundle over a topological space X with fiber F is
a topological space E, called a total space, together with a surjective continuous map

p ∶ E →X,

satisfying the following condition: for each x ∈ X there exists a neighbourhood U of x with a
homeomorphism

h ∶ p−1(U)→ U × F.
which makes the diagram

p−1(U) U × F

U

h

p ProjU

commute.

Fiber bundles are ‘locally product-like’, but they do not need to be a product globally, as
the following examples demonstrate.

Example 5.12.49.

1. Möbius strip with projection on the ‘middle circle’ is a fiber bundle over S1 with fibers
[0,1]. For small open sets U we have p−1(U) ≅ U × [0,1].

Definition .

A covering space of a space X is a space I with a continuous map

p: I→ X
such that

for each xex there is a neighborhood Nofx ✓ Vi e UxD
T

such that p
- ' fuk !¥ Vi , Vi open in 5

discrete

top space
and ply : Vi → U is a homeomorphism fitI.

Definition
.

A fiber bundle over B with fiber F is a total space E with a surjective

continuous map p: E
→ B

such that for each beB there is a neighborhood Hob with a homeomorphism

h:p
-Yu) → UXE

which makes the diagram

p
-'Cut →hNxF

P! /proj
U

commute
.

Fiber bundles are ' locally product - like!

Examples .

① Mobius
→ I p-ynt-nxco.is

② Klein

.

- d p
- ' cul - Uxs'

③ Hopf
go→ 5 p

- ' ful - U 's'

•

•

Compare this just to taking a cylindrical surface S1 × [0,1] with a projection to S1 ×{ 1
2
}.

Locally, this fiber bundle looks the same, but the total spaces are clearly different.

2. Similarly, we can take Klein bottle with projection such that p−1(U) ≅ U × S1, and we
get a fiber bundle over S1 with fibers S1. We can see this for example by taking the
representation by square with identified sides – if we draw a straight line going through
the middle of the square, we get a circle, and we can project vertically to that circle.

Definition .

A covering space of a space X is a space I with a continuous map

p: I→ X
such that

for each xex there is a neighborhood Nofx ✓ Vi e UxD
T

such that p
- ' fuk !¥ Vi , Vi open in 5

discrete

top space
and ply : Vi → U is a homeomorphism fitI.

Definition
.

A fiber bundle over B with fiber F is a total space E with a surjective

continuous map p: E
→ B

such that for each beB there is a neighborhood Hob with a homeomorphism

h:p
-Yu) → UXE

which makes the diagram

p
-'Cut →hNxF

P! /proj
U

commute
.

Fiber bundles are ' locally product - like!

Examples .

① Mobius
→ I p-ynt-nxco.is

② Klein

.

- d p
- ' cul - Uxs'

③ Hopf
go→ 5 p

- ' ful - U 's'

•

•

We can do the same for torus, and get a fiber bundle which looks the same locally, but
the total space is different – a product S1 × S1 globally.

56

3. Hopf fibration is a fiber bundle over S2 with fibers S1 and total space S3. That is, we
have a projection p ∶ S3 → S2 such that for small neighbourhoods U , the preimage is
p−1(U) ≅ U × S1. We will not define p here, but this construction gives a nice way to
visualise S3 in R3.28

Definition .

A covering space of a space X is a space I with a continuous map

p: I→ X
such that

for each xex there is a neighborhood Nofx ✓ Vi e UxD
T

such that p
- ' fuk !¥ Vi , Vi open in 5

discrete

top space
and ply : Vi → U is a homeomorphism fitI.

Definition
.

A fiber bundle over B with fiber F is a total space E with a surjective

continuous map p: E
→ B

such that for each beB there is a neighborhood Hob with a homeomorphism

h:p
-Yu) → UXE

which makes the diagram

p
-'Cut →hNxF

P! /proj
U

commute
.

Fiber bundles are ' locally product - like!

Examples .

① Mobius
→ I p-ynt-nxco.is

② Klein

.

- d p
- ' cul - Uxs'

③ Hopf
go→ 5 p

- ' ful - U 's'

•

•

5.12.3 Moving towards sheaves.

What if the fiber F had some additional structure to topology, like a structure of a group or a
vector space? For instance in the Example 5.12.43.3, with a spiral covering a circle, the fiber
has naturally the additive structure of Z rather than being just a discrete topological space.

Another, more general example, is taking any fiber bundle, and replacing the fibers F with

a (co)homology, so that locally we have projections U ×Hi(F, k)
π→ U . This changes the total

space too. Taking the example of Klein bottle, we can apply H1(S1,R), so that our ‘fibers’
are actually the vector space R – see Figure 8. We will not go into details at this point, but
the cycle generating R in the homology group comes with some orientation; if we take a point
(u,1) ∈ U ×H1(S1,R), we can follow it along a closed curve going around the Klein bottle, and
the sign of the second coordinate will flip by the time we get back to u. This is basically a
reformulation of the fact that the Klein bottle is not orientable.

Figure 8: On the left, we see the Klein bottle as a fiber bundle over S1, the vertical black
circle, and with fibers also S1, the horizontal circles in color. We apply H1(⋅,R) to each of the
horizontal circles, getting R as new fibers instead – this yields the space on the right picture,
which looks like an “infinite Möbius strip”. The maps between those new fibers are induced by
the inclusion maps between the original fibers – as shown in the middle picture.

Assigning some algebraic structure to neighbourhoods of points is starting to look like sheaf
theory – and that is where we are heading. In particular, this is the étale space perspective of
sheaf theory.

Definition 5.12.50 (Étale space). The étale space of a presheaf F on a topological space X
is the disjoint union

Et(F) = ⊔
x∈X

Fx,

together with the topology generated by open sets of the form

U(s,V) = {sy ∈ Fy ∣ y ∈ V } ,
28See, e.g., here.

57

https://nilesjohnson.net/hopf.html

for each pair (s, V), s ∈ F (V), V open subset of X. Recall that sy denotes the germ of s over
y, which is the image of s under the restriction map

F (V)→ Fy

s↦ sy,

where Fy = limÐÐ→
W ∋y

F (W) is the stalk at y.

Figure 9: The open set U(s,V) in the étale space for an open set V ⊆X and an element s ∈ F (V)
is the set of all germs sy over points y ∈ V . In this scheme we see how we get to two particular
elements sy, sy′ ∈ U(s,V).

The étale space has several very nice properties. For X, F and Et(F) as in the definition,
we define the projection p ∶ Et(F) → X by sending an element e ∈ Fy to y. Then we have the
following:

1. Et(F) is a topological space,

2. p is a local homeomorphism onto X,

3. p−1(x) = Fx is an abelian group,

4. group operations +x ∶ Fx × Fx → Fx are continuous,

5. the functor defined by F +(U) ∶= {continuous sections s ∶ U → Et(F)} is the sheafification
(see Definition 5.10.11) of F .

Let us look at some examples of constructing étale spaces and sheafifications out of them.

Example 5.12.51.

1. Consider the constant presheaf: we take any topological space X, and the functor F
sending all open sets to Z, and all morphisms to identity. What is Et(F)?
For every x ∈ X, the stalk over x is Fx = Z, so as a set, Et(F) = ⊔x∈X Z, which we can
realize as Z ×X. We need to compute the open sets generating the topology of Et(F).
Let V ⊆ X be open, and let n ∈ F (V) = Z. For any y ∈ V , the germ ny ∈ Fy is n, because
the restriction map F (V) → Fy is the identity id ∶ Z → Z. And if we view Fy as part of
Et(F) = Z ×X, we have ny = (n, y). Hence, the open set we get for the pair (n,V) is

U(n,V) = {ny ∈ Fy ∣ y ∈ V } = {(n, y) ∣ y ∈ V } = {n} × V.

58

The topology on Et(F) are all finite intersections and arbitrary unions of these sets. We
end up with Et(F) being Z ×X even as a topological product with discrete topology on
Z.

Now sheafification of F is F + given by

F +(U) ∶= {s ∶ U → Z ×X ∣ s continuous section} .

A continuous section s ∶ U → Z ×X with respect to the projection p ∶ Z ×X → X sends
each connected component V of U identically to {n} × V for some n. Now if we put the
additive structure of the group on the set of sections by adding the first coordinates, we
have F +(U) ≅ Z(# of connected components of U).

The figure bellow shows Et(F) in the case X = S1.

Definition
.

Let F be a presheaf on X with values in Ab .

The stratification of F
,
denoted Ft

,
is defined to be

Hui - { sin→ E. e. It ''II't 7.III.I. III. to }
for each open set NEX .

id

Id → 9,
Example .

FCU) - Z
, Ffs) side

, EHF) .- µ z FCV) → Fy

Ncn
, v)
= { ME # Zx : MEBy for some ye V , m-

- n }
= (n

,
x) : x EV VEX
- V

-Nuit

Eth) x-- S
'

- I
open ? talk to T

O00000 . . .

Ntl n n - I

→ Z has the discrete topology ,
XXZ has the product topology .

EHF) - Et (2x) .

←
Sheaf .fi cation
of const

.

funof .

(Notation Iz, = Zx)

2. In the previous example we have seen how to construct covering of S1 by infinitely many
disjoint circles as an étale space – we started with constant presheaf sending everything to
Z. We can use exactly the same construction to get a covering by any number of disjoint
circles when we start with constant presheaf sending everything to an abelian group A of
the desired cardinality. For example for Z2 we get covering by two circles.

Topologically, the étale space only depends on the cardinality of A, but étale space has
an additional abelian structure, and so we get different étale spaces for A being Z4 and
Z2 ×Z2.

3. We would like to construct étale space E on S1 which would topologically contain the
covering X̃ by the twice-twisted circle as in Example 5.12.43, 2. We need to start with
a presheaf more complicated than a constant one, otherwise we would get something
analogous to the previous examples. But where should we even start looking? The
answer is: the correspondence of étale spaces and sheaves!

We aim to obtain étale space whose continuous sections are the sections of the twisted-
circle covering X̃. We can näıvely define a presheaf by

F̃ (U) = {s ∶ U → X̃ ∣ s is a continuous section} .

However, no structure of an Abelian group is given to F̃ (U). Moreover, F̃ (S1) = ∅, which
can not even be given any group structure. But there is a simple trick to create Abelian
groups from any set – we can take the free Abelian group generated by the sections instead
of the sections themselves. So we define a presheaf F by

F (U) = ZF̃ (U) = Z{s∶U→X̃ ∣ s is a continuous section}.

This is still not a sheaf, but we can now define étale space Et(F), and then we get the
sheafification of F by taking continuous sections of the étale space.

For every point of y ∈ S1, if we take a small enough neighbourhood U , then F (U) = Z×Z
— we get one copy of Z for each of the two sections. Since this is also true for all
neighbourhoods V ⊆ U , we still have the same group in the colimit, that is, Fy = Z × Z.
This means that as a set we have Et(F) = Z×Z×S1, which we can see as an infinite matrix
of circles. But the topological structure on this set is very different than the usual topology
on Z × Z × S1. Without a proof, let us just state that in he étale topology, the circles
(m,n,S1) and (n,m,S1) are connected so that they produce the twisted double-circle X̃.

59

5.12.4 Local systems and constant sheaves

Definition 5.12.52 (Constant sheaf). A sheaf F on X is called constant if there exists a sheaf
G on {pt} such that

p∗G ≅ F,
where p ∶X → {pt} is the map sending everything to one point.

Exercise 5.12.53 (easy). Show that F is a constant sheaf iff it is the sheafificaton of a presheaf
of the form 1G, i.e., a presheaf which assigns the same group/vector space/... G to every open
set, and has identities as all the restriction maps.

Definition 5.12.54 (Locally constant sheaf). A sheaf F on X is locally constant (or a local
system if F is valued in Vectk) if for each x ∈X there exists a neighborhood U of x such that

i∗UF is a constant sheaf,

where iU ∶ U ↪X. This means that we have some sheaf G on {pt} such that

{pt} U X

G p∗G ≅ i∗UF F

p iU

p∗ i∗U

Note that we often denote i∗UF by F↾U .

Example 5.12.55. The sheaf we get from the étale space in Example 5.12.51, 3., is not
constant, but it is locally constant.

Analogous to the connection between covering spaces and the fundamental group, there is
a connection between local systems (locally constant sheaves valued in Vectk) and the repre-
sentations of the fundamental group.

Theorem 5.12.56. Suppose that X is a path-connected, locally path-connected, semilocally
simply connected, and locally compact29 topological space. Then there is a bijection (even an
equivalence of categories)

{local systems on X}/{isomorphisms} ←→ {representations of π1(X,x0)}/{isomorphisms}

In what follows we will describe a large family of well-behaved sheaves, which in a certain
sense are ‘built’ out of locally constant pieces. Sheaves in this family will be called constructible,
and will provide a long list of well-behaved examples for which we can compute sheaf cohomol-
ogy.

5.12.5 Σ-constructability

If we have a triangulation h ∶ Σ→X of a space X, where Σ is an (abstract) simplicial complex,
then for σ ∈ Σ, h(σ) is homeomorphic to σ, which is a very well-behaved space, and so the
local systems on h(σ) are easy to describe. This can be very useful for calculations, because
reasonable simplicial complexes are much easier to work with than general topological spaces.

29Space X is locally compact if for every x ∈ X there exists a neighborhood U of x and a compact K ⊆ X such
that U ⊆K.

60

Definition 5.12.57 (Σ-constructible). A sheaf F on X is Σ-constructible (or Σ-cellular) if

• h ∶ Σ→X is a triangulation of X,

• F↾h(σ) is a constant sheaf for every σ ∈ Σ.

For a Σ-constructible sheaf, the constant sheaf on a simplex σ ∈ Σ is fully described by one
abelian group. This gives us the following proposition.

Proposition 5.12.58. For h ∶ Σ → X, a fixed triangulation of a topological space, there is an
equivalence of categories

Σ-constructible sheaves on X ←→ Fun(Σ,Ab),

where Σ is viewed as a poset category.

Exercise 5.12.59. Find the two functors realising the category equivalence in Proposition 5.12.58.

This approach can be used to compute the sheaf cohomology of the sheaf from Exam-
ple 5.12.51.3. We can triangulate X = S1 by a triangle Σ so that F is Σ-constructible, and then
do the calculation in Fun(Σ,Ab).

Lecture 13: Cohomology

5.13.1 Čech cohomology

Let U = {Ui}i∈I be an open cover of X. Define the ordered set of (n + 1) tuples of indexes:

In ∶= {(α0, . . . , αn) ∈ In+1 ∶ Uα0 ∩ . . . ∩Uαn ≠ ∅}.

With this we can construct the Čech complex begining with it’s chain groups:

Čn(U ;k) ∶= {f ∶ In → k},

for k some field or ring. Further, define the differential between the chain groups of the Čech
complex:

dn ∶ Čn(U ;k)→ Čn+1(U ;k)

f ↦ dnf((α0, . . . , αn)) ∶=
n+1

∑
i=0

(−1)if((α0, . . . , α̂i, . . . , αn+1)),

where the the hatted ith index is removed in each summand. Finally taking the quotient of
kernels and images of codimension 1 differentials we obtain the Čech cohomology of U :

Ȟn(U , k) ∶= ker dnÒimdn−1
.

Additionally, Čech chomology is exactly the simplicial cohomology of the nerve of the open
cover U .

Examples of Čech cohomology

1. Let X = S1 and U = {U1, U2}.

We first compute the Čech complex:

61

Č0(U ;k) = {f ∶ {1,2}→ k}
≃ k ⊕ k

Č1(U ;k) = {f ∶ {(1,2)}→ k}
≃ k

d0f((1,2)) = f(1) − f(2),

which may be written as k2 d0Ð→ k, from which we compute Ȟ0(U , k) ≅ k and Ȟ1(U , k) ≅ 0.
Unfortunately we do not recover the expected cohomology of the circle, however, we recall
that the Čech cohomology is really the simplicial cohomology of the nerve of the cover,
which in this instance is identical to that of a line.

Definition 5.13.60. An open cover V refines U if each Vj is contianed in Ui for some i ∈ I.
Refinements give the set of all open covers of a space X the structure of a category, U → V if
V refines U .

Definition 5.13.61. The Čech cohomology of a space X is given by the colimit,

Ȟi(X;k) = limÐ→
U

Ȟi(U ;k).

2. Let X = S1 and V = {U1, U2, U3} (i.e. V refines U).

Again we compute the Čech complex:

Č0(V;k) = {f ∶ {1,2,3}→ k}
≃ k ⊕ k ⊕ k

Č1(V;k) = {f ∶ {(1,2), (1,3), (2,3)}→ k}
≃ k ⊕ k ⊕ k

d0((αi, αj)) = f(i) − f(j),

which may be written as k3 d0Ð→ k3. Now we require the matrix representation of d.

d0 =
⎛
⎜
⎝

1 −1 0
1 0 −1
0 1 −1

⎞
⎟
⎠

From this we can compute Ȟ0(V, k) = k(1,1,1) ≃ k and Ȟ1(V, k) ≅ k. Which does recover
the expected circle cohomology. In fact tkaing the colimit we obtain Ȟ0(X,k) = k and
Ȟ1(X,k) = k.

5.13.2 Čech cohomology for presheaves

Let U = {Ui}i∈I be an open cover of X and define In as before:

In ∶= {(α0, . . . , αn) ∈ In+1 ∶ Uα0 ∩ . . . ∩Uαn ≠ ∅},

and additionally let F be a presheaf on X. Now define the Čech complex with coefficients in
F .

62

Čn(U , F) ∶= ∏
(α0,...,αn)∈In

F (∩αiUαi)

dn ∶ Čn(U , F)→ Čn+1(U , F)

Tracking the image of the differential is a little tricky. If β = {β0, . . . , βn} ⊆ {α0, . . . , αn+1} =
α then there exists i such that β = (α0, . . . , α̂i, . . . , αn+1). Now since the intersection of α
sets intersects more sets it must be a subset of the intersection of β sets, so the map Rαi ∶
F (Uβ0 , . . . , Uβn)→ F (Uα0 ∩ . . . ∩Uαn+1) is a restriction.

Now we can construct a differential where we consider all the possible ways we could insert
an extra term.

F (Uβ0 , . . . , Uβn)
d(β0∩...∩βn)ÐÐÐÐÐÐ→ ∏

α∈In+1

s.t. β⊆α

F (Uα0 ∩ . . . ∩Uαn+1)

d(β0∩...∩βn) ∶= ∑
i

(−1)iRαi

And finally we obtain the full differential which is just the combination of all the dβ

dn ∶= ∏
β∈In

dβ .

We are now ready to compute the presheaf cohomology of U and X.

Definition 5.13.62. Ȟn(U ;F) ∶= ker dnÒimdn−1
, Ȟn(X;F) ∶= limÐ→

U

Ȟn(U ;F).

Definition 5.13.63. A topological space X is paracompact if for each open cover U there
exists a locally finite open refinement V.

Now we additionally assume X is paracompact and F is a sheaf. Recall Definition 4.9.11
for sheaves. This means for any open cover U the sequence

0→ F → Č0(U ;F)→ Č1(U ;F)→ . . .

is a resolution of F (not necessarily injective).

Theorem 5.13.64. Assume X is Hausdorff and paracompact, F is a presheaf on X, and let
F + be the sheafification of F . Then for all n ≥ 0,

Ȟn(X;F) ≃ Ȟn(X;F +) ≃ RnΓ(X;F +).

This theorem is useful for two reasons, we can use the relatively simpler Čech cohomology to
compute sheaf cohomology, and we do not need to go through the sheafification process. With-
out going into the proof we can observe that presheaves and sheaves agree on small local scales
but disagree globally and the limit is shrinking the cover elements and using tiny restriction
maps to achieve the correspondence.

5.13.3 Cellular Sheaf Cohomology

Assume Σ
hÐ→ X is a triangulation, and F is Σ-constructible, with respect to Σ (i.e. further

shrinking cover elements wont change F). Define St(σ) ∶= the open star of σ = {τ ∶ τ ≥ σ}. We
have an open cover of X consisting of open stars:

U = {h(St(σ))}σ∈Σ0 .

Moreover, the nerve of U , N (U), is homeomorphic to Σ (i.e. N (U) ≃ Σ).
Now we may compute the Čech cohomology relative to U :

0→ Č0(U ;F)→ Č0(U ;F)→ . . .

63

Unpacking this chain we obtain the regular sequence of increasing numbers of intersections of
open sets:

0→ ∏
σ∈Σ0

F (h(St(σ)))→ ∏
(σ,τ)

F (h(St(σ)) ∩ h(St(τ)))→ . . .

This can be simplified further as the increasing intersections of the open sets is exactly the
simplices of increasing dimension:

0→ ∏
σ∈Σ0

F (h(St(σ)))→ ∏
σ∈Σ1

F (h(St(σ)))→ ∏
σ∈Σ2

F (h(St(σ)))→ . . .

We can further refine this using Proposition 5.12.58:

Σ-constructible sheaves←→ Functors on Σ

This lets us think of F just as a functor from Σ to Ab. The resolution then becomes:

0→ ∏
σ∈Σ0

F (σ)→ ∏
σ∈Σ1

F (σ)→ ∏
σ∈Σ2

F (σ)→ . . .

Again we still need to define the differential map, however, it is analogous to the Čech coho-
mology differential. We are finally ready to define simplicial sheaf cohomology.

Definition 5.13.65.

Hn(Σ;F) ∶= ker dnÒimdn−1
.

Theorem 5.13.66.

Hn(Σ;F) ≅ RnΓ(X;F)

This sequence of simplifications is dependent on the initial triangulation being constructible
with respect to F , which is the most difficult step in the process.

Examples of simplicial sheaf cohomology

1. What is the simplicial sheaf cohomology of the projection map:

We begin by fixing a triangulation of X.

F (σ) ≅ Z⊕Z for all σ ∈ Σ, F (σ → τ) = id for all (σ → τ) ≠ (v3 → e3), and instead

F (v3 → e3) ∶ Z⊕Z→ Z⊕Z
(n,m)↦ (m,n)

64

Now we can write down the complex as:

0→ Z6 dÐ→ Z6 → 0.

The differential, d, is then given by the matrix

v1 v2 v3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

e1 1 0 −1 0 0 0
0 1 0 −1 0 0

e2 0 0 1 0 −1 0
0 0 1 0 0 −1

e3 1 0 0 0 0 −1
0 1 0 0 −1 0

Each one and two cell is assigned to two copies of Z and the maps between them
are either ±id or 0, except for the lower right entry which as we noted was the map
switching the indices. From this we compute H0(X;F) ≃ Z(1,1,1,1,1,1), H1(X;F) ≃
Z6/(a, b, c, d, e,−e) ≃ Z⊕ZÒ(n,m) ∼ (m,n). If we were just considering the ranks of

these groups this would coincidentally be equivalent to the cohomology of the circle. The
0th cohomology of the sheaf is really counting how many global sections we have and the
digonal is the only place we can get a continuous section which is why we get Z. Then by
looking at the double loop we see 1st cohomology is Z ⊕ Z but we have to also consider
the that the points (n,m) and (m,n) are really sitting on the same circle so intuitively
we get the desired quotient. However, this is certainly calculating something different to
regular cellular homology.

2. In general, for X = S1 and Σ as before

Z = Rep. of Π1(X,x0) Local System L on X Σ-constructible sheaf on X

M ∶ V → V Fun(Σ,Vect)

We start with representations of the fundemental group, which is simply Z. Representa-
tions of Z may be packaged as a square matrix M , giving the bijection on the left. We
can also compute a local system L from our representation which can also be transformed
into a Σ constructible sheaf for our triangulation. This sheaf can of course be considered a
functor from the triangulation to a vector space. So the entire pipeline can be considered
to take a square matrix and return a functor. If we were to do this process, each simplex
σ will be sent to the vector space, i.e. F (σ) = V ; all the maps are sent to the identity
apart from one, i.e. F (σ → τ) = id and F (γ → λ) =M .

We can write this down as a complex:

0→ V 3 dÐ→ V 3 → 0

with boundary matrix:

d =
⎛
⎜
⎝

idV −idV 0
0 idV −idV

idV 0 −M

⎞
⎟
⎠

Now we are able to compute the cohomology:

H0(X,L) ≃ ker d ≅ +1 eigenspace of M

H1(X,L) ≃ coinvariants of M = VÒ(V −MV)

65

These sheaf cohomology groups are potentially much more complicated than the standard
cohomology of X so we have obtained an interesting generalisation of cohomology. In fact,
we could repeat this computation without ever knowing what the fundemental group was
by replacing the boundary maps with selected matrices and setting up the complex in the
same way.

The reader should make a close comparison of the example above with Example 2.4.28,
Example 2.5.40, and Example 3.7.21. The idea is to at least partially bring this journey
full-circle, so to speak.

6 Notes, remarks

6.1 Additional definitions and lemmas

6.1.1 Composing natural transformations

There are two ways in which it makes sense to compose natural transformations. They are
called vertical and horizontal composition.

Vertical composition. The vertical composition is very straightforward. Let F,G,H be
three functors between fixed categories A and B, and let us consider two natural transforma-
tions, σ from F to G, and τ from G to H. Then we can obtain a natural transformation
τ ○ σ ∶ F ⇒H by taking morphisms (τ ○ σ)X ∶= τX ○ σX .

A B

F

G

H

σ

τ

F (X) G(X) H(X)

F (Y) G(Y) H(Y)

Ff

σX

(τ○σ)X

Gf

τX

Hf

σY

(τ○σ)Y

τY

Horizontal composition. The horizontal composition is a bit trickier. Assume we have three
categoriesA, B, C, pairs of functors F,F ′ ∶ A→ B andG,G′ ∶ B → C, and natural transformations
σ ∶ F ⇒ F ′ and τ ∶ G ⇒ G′. We would like to construct a natural transformation ψ = ‘τ ○ σ’
from G ○ F to G′ ○ F ′.

A B C
F

F ′

G

G′

σ τ

We can construct ψ ∶ GF ⇒ G′F ′ in two natural ways. We can go from GF to G′F ′ via GF ′

or via G′F . For the first option, look at the diagram bellow. Starting with two objects and a
morphism in A, on the left, we use the naturality of σ, and get the commutative diagram in the
middle. We apply the functor G to this diagram, which yields, again, a commutative diagram
— the left square in the third diagram. To get the right commutative square in that diagram,

we consider F ′(X) F ′(Y)F ′f
, and apply the naturality of τ .

A

B

f

F (X) F ′(X)

F (Y) F ′(Y)

Ff

σX

F ′f

σY

GF (X) GF ′(X) G′F ′(X)

GF (Y) GF ′(Y) G′F ′(X)

GFf

GσX

GF ′f

τF ′(X)

G′F ′f

GσY τF ′(Y)

Together the last diagram shows that if we define ψX ∶= τF ′(X) ○GσX for each X ∈ ObA, we
get a natural transformation ψ ∶ GF ⇒ G′F ′ as desired.

66

The second approach is very similar. We start exactly the same, but we apply G′ to the
middle diagram, which yields the right square in the last diagram. The left square is then the

naturality of τ applied to the morphism F (X) F (Y)Ff
.

A

B

f

F (X) F ′(X)

F (Y) F ′(Y)

Ff

σX

F ′f

σY

GF (X) G′F (X) G′F ′(X)

GF (Y) G′F (Y) G′F ′(X)

GFf

τF (X)

G′Ff

G′σX

G′F ′f

τF (Y) G′σY

Again, the last diagram shows that if we define ψ̃X ∶= G′σX ○ τF (X), we get a natural

transformation ψ̃ ∶ GF ⇒ G′F ′.
Now the question is whether the two approaches gives us the same natural transformation.

We ask whether τF ′(X) ○ GσX = G′σX ○ τF (X) for each object X of A, that is, whether the
following diagram commutes:

GF (X) G′F (X)

GF ′(X) G′F ′(X)

τF (X)

GσX G′σX

τF ′(X)

But this diagram is commutative due to naturality of τ applied to F (X) F ′(X)σX . Therefore,
we can define the composition of σ and τ in either of those ways.

6.2 Examples, Remarks

Lecture 10: Example where the ‘näıve image’ of a sheaf morphism is not a sheaf

In Lecture 10 we have discussed that even though both Fun(Open(X),Ab), the category of
presheaves, and Shv(X), the category of sheaves, are abelian, the images do not coincide –
the image of a natural transformation between two sheaves in the category of presheaves might
not be a sheaf. We need to take the sheafification of that to get the image in the category of
sheaves.

Here is a simple example of a natural transformation between two sheaves whose image
(as defined in the category of presheaves) is not a sheaf. Let us consider topological space
(X;{X,U,V,W = U ∩ V,∅}), and two sheaves as on the following two figures:

X

U V

W

0

↝

Z

Z Z

Z

0

id id

id id

Z⊕Z

Z Z

Z

0

Proj1 Proj2

0 0

We define a natural transformation ϕ between the two sheaves:

67

Z Z⊕Z

Z Z

Z Z

Z Z

0 0

id id

∆∶x↦ (x,x)

Proj1 Proj2

id

id

0
id

id

0
0

We can easily check that all the rectangles commute. The image of ϕ in the category of functors
from Open(X) to Ab is the functor given by im(ϕ) ∶ A ↦ im(ϕA) for each open set A in X.
This is isomorphic to the following:

Z

Z Z

0

0

id id

This is not a sheaf. The problem here is the (non-)existence of an element gluing local infor-
mation from U and V to X—if we choose different element on U and on V , the restrictions
commute, but there is no element for the union which would restrict to both at the same time.
The problem is, that in the image, we lose the constraint given by W in the first sheaf. In
the image, we can have two different elements for U and for V , and it is still true that their
restrictions to W coincide, since those restrictions are the zero map.

References

[AHS09] J. Adámek, H. Herrlich, and G. E. Strecker. The Joy of Cats. Mineola, N.Y.: Dover
Publications, 2009. isbn: 9780486469348. url: http://katmat.math.uni-bremen.
de/acc.

[Bre12] G. E. Bredon. Sheaf theory. Vol. 170. Springer Science & Business Media, 2012.

[Cur14] J. M. Curry. “Sheaves, cosheaves and applications”. PhD thesis. ProQuest LLC, Ann
Arbor, MI: University of Pennsylvania, 2014.

[KS13] M. Kashiwara and P. Schapira. Sheaves on Manifolds. Vol. 292. Springer Science &
Business Media, 2013.

[Mac98] S. MacLane. Categories for the Working Mathematician. 2nd ed. Vol. 5. Graduate
Texts in Mathematics, Vol. 5. Springer-Verlag, 1998.

[Pen92] R. Penrose. “On the Cohomology of Impossible Figures”. In: Leonardo 25.3/4 (1992),
pp. 245–247. issn: 0024094X, 15309282.

[Rot08] J. J. Rotman. An introduction to homological algebra. Springer Science & Business
Media, 2008.

68

http://katmat.math.uni-bremen.de/acc
http://katmat.math.uni-bremen.de/acc

	Introduction
	Lecture 1: Introduction and Penrose triangle

	Category theory
	Lecture 2: Categories and functors
	Category definition.
	Functors: maps between categories, `metamorphisms'

	Lecture 3: Natural transformation, equivalence, adjoint pairs
	Adjoint Pairs

	Lecture 4 & 5: Coproducts, Colimits, Products and Limits
	Coproducts
	Colimits
	Products
	Limits

	Homological Algebra
	Lecture 6: Abelian category, exact sequence, derived functor
	Lecture 7: Concrete computation of resolutions and derived functors

	Sheaf Theory
	Lecture 8 & 9: Pre(co)sheaves and (co)sheaves

	Sheaf Cohomology
	Lecture 10: Morphisms of sheaves, stalk, sheafification
	Lecture 11: Category of sheaves, sheaf cohomology
	Lecture 12: Étale space, local systems, -constructibility
	Covering spaces and fundamental groups
	From covering spaces to fiber bundles
	Moving towards sheaves.
	Local systems and constant sheaves
	-constructability

	Lecture 13: Cohomology
	Cech cohomology
	Cech cohomology for presheaves
	Cellular Sheaf Cohomology

	Notes, remarks
	Additional definitions and lemmas
	Composing natural transformations

	Examples, Remarks

