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Abstract
The Voronoi tessellation in R

d is defined by locally minimizing the power distance
to given weighted points. Symmetrically, the Delaunay mosaic can be defined by
locally maximizing the negative power distance to other such points. We prove that
the average of the two piecewise quadratic functions is piecewise linear, and that all
three functions have the same critical points and values. Discretizing the two piecewise
quadratic functions, we get the alpha shapes as sublevel sets of the discrete function on
the Delaunay mosaic, and analogous shapes as superlevel sets of the discrete function
on the Voronoi tessellation. For the same non-critical value, the corresponding shapes
are disjoint, separated by a narrow channel that contains no critical points but the entire
level set of the piecewise linear function.
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1 Introduction

The starting point for the work reported in this paper is the role of the general position
assumption in the construction of Delaunay mosaics, and more specifically of their
radius functions. For points in general position, the radius function is generalized dis-
crete Morse [10,12]. In contrast, without the general position assumption, the mosaics
are not simplicial and the radius functions are not generalized discrete Morse. How do
we relax the theory to allow for non-generic data? Related to this question is the sym-
metry between Voronoi tessellations and Delaunay mosaics introduced in this paper,
which appears when we have weights, and non-generic data is essential to realize this
symmetry. We weave the two strands of inquiry together by studying the continuous
and discrete radius functions that define Voronoi tessellations and Delaunay mosaics
for weighted points not necessarily in general position. We prove new results on these
tessellations and mosaics by exploiting the structural properties of these functions.

The Voronoi tessellation and the dual Delaunay mosaic are classic topics in discrete
geometry and go back at least to the seminal papers by Voronoi [21] and by Delaunay
[4]. The radius function on the Delaunay mosaic was first introduced in [7], along with
its sublevel sets, which are the alpha shapes of the given points. Three-dimensional
alpha shapes have found ample applications in shape modeling [9,13,16] and in the
analysis of biomolecules [8]. Discrete Morse theory was introduced by Forman [10]
and generalized to allow for collapses across more than one dimension by Freij [12].
In parallel, Edelsbrunner developed the wrap algorithm in an industrial setting, asking
for the connection to discrete Morse theory [6], which was later established by Bauer
and Edelsbrunner [1]. We formulate a homological extension of discrete Morse the-
ory needed to encompass radius functions on non-generic Delaunay mosaics and thus
facilitate their application when non-generic position is essential, such as in crystal-
lography.

Non-general position of points with weights is also essential when we interpret a
Voronoi tessellation as a Delaunay mosaic and vice versa. By this we do not mean
to take the tessellation to its dual mosaic but rather to construct a different set of
weighted points whose Delaunay mosaic is the Voronoi tessellation of the first set.
Viewing the tessellation and the mosaic as projections of the boundary complexes of
convex polytopes, this construction follows by observing that the polar of a convex
polyhedron is still a convex polyhedron. Notwithstanding, we get new insights into a
much studied subject by looking into the details of this symmetry. We mention four
such results, the first of which is combinatorial:

1. Letμ �= ν be cells of aVoronoi tessellation, andwriteμ∗, ν∗ for the corresponding
cells in the dual Delaunay mosaic. Then intμ ∩ ν∗ �= ∅ implies int ν ∩ μ∗ = ∅
(see Theorem 3.2).

The second result is about the piecewise quadratic functions, vor, del : Rd → R,
whose pieces define the Voronoi tessellation and the dual Delaunay mosaic, respec-
tively. Choosing opposite signs, the average defined by sd(x) = [vor(x) + del(x)]/2
is piecewise linear. We use the above combinatorial insight to prove the following:
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2. Extending concepts from smooth Morse theory to piecewise quadratic and piece-
wise linear functions, we show that vor, del, sd : Rd → R have the same critical
points and the same critical values (see Theorem 3.7).

Discretizing the two piecewise quadratic functions, we get radius functions on the
Voronoi tessellation and Delaunay mosaic, vor : Vor(B) → R, del : Del(B) → R.
For generic collections of weighted points, they are generalized discrete Morse but
not so for non-generic collections:

3. Extending concepts from discrete Morse theory, we describe the structure of the
steps of the radius functions on the Voronoi tessellation and Delaunay mosaic for
weighted points in non-general position (see Theorem 4.2).

For every non-critical value, t ∈ R, the sub- and superlevel sets of these discrete
functions, Delt (B) = vor−1(−∞, t] and Vort (B) = del−1[t,∞), have disjoint
underlying spaces separated by sd−1(t). Assuming B is locally finite and periodic,
these are complexes geometrically realized in the d-dimensional torus with finite rank
homology groups.

4. The homology groups of Delt (B) and Vort (B) satisfy relations akin to Alexander
duality for complementary spaces in the d-dimensional sphere (see Theorem 5.4).

To formulate this precisely, we need to distinguish between essential and non-essential
homology classes, as considered in extended persistent homology [2].

Outline. Section 2 presents background in discrete geometry and discrete Morse
theory. Section 3 studies the piecewise quadratic functions that define the Voronoi
tessellation and Delaunay mosaic as well as their average, which is piecewise linear.
Section 4 considers the corresponding discrete functions and introduces a homological
framework to characterize their steps. Section 5 relates the sublevel sets of one with
the superlevel sets of the other. Section 6 concludes the paper.

2 Background

We review Voronoi tessellations and the dual Delaunay mosaics, which we introduce
for points with real weights in Euclidean space. In addition, we describe the standard
polarity transform and its relation to the tessellation and the mosaic. We then explain
how to view tessellations and mosaics as projections of convex polyhedra. Finally,
we introduce the terminology of discrete Morse theory, which we adapt to polyhedral
complexes.

2.1 Voronoi Tessellations and DelaunayMosaics

We refer to a = (pa, wa) ∈ R
d × R as a weighted point, with location pa ∈ R

d and
weight wa ∈ R. We call a set B ⊆ R

d × R a Delone set of weighted points if there
exist radii 0 < r < R < ∞ such that every ball of radius r contains the location
of at most one weighted point, and every ball of radius R contains the location of
at least one weighted point. The first condition implies that the projection of B to
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R
d is injective, and the second condition implies that there is no half-space empty of

locations. We call B ⊆ R
d ×R a periodic set of weighted points if B = M+(Zd +0),

in which M ⊆ [0, 1)d × R is finite with injective projection to [0, 1)d , and ‘+’
means coordinate-wise addition for pairs with one weighted point in M and the other
an integer point with 0 weight. Note that every periodic set of weighted points is a
Delone set of weighted points. Most of our results hold for Delone sets, except for
those in Sect. 5, which hold only for periodic sets.

It is common to interpret a = (pa, wa) as a sphere, with center pa and squared
radius wa , but for this we have to allow for spheres with non-positive squared radii.
The power distance of a point x ∈ R

d from a = (pa, wa) is

πa(x) = ‖x − pa‖2 − wa .

It is positive outside the sphere, zero on the sphere, and negative inside the sphere. Of
course, for a sphere with negative squared radius, all points are outside. For a non-
empty subset A ⊆ B, consider all points x ∈ R

d with equal power distance from the
weighted points in A and strictly larger power distance from the other weighted points,
and call its closure the (Voronoi) cell of A, denoted cell(A). Each non-empty cell is a
convex polyhedron in R

d , and its dimension depends on A. The (weighted) Voronoi
tessellationof B, denotedVor(B), is the collection of non-empty cells. These cells have
disjoint interiors and together they cover Rd . The Voronoi tessellation is a polyhedral
complex in the sense that every cell is a convex polyhedron, every face of a cell is
again a cell, and any two cells are either disjoint or intersect in a common face, which
is therefore also a cell in the tessellation. A cell of dimension p has faces of dimension
from 0 to p, and we call the faces of dimension p−1 its facets. Define the dual cell of
A as the convex hull of the locations in A, denoted cell∗(A), which is again a convex
polyhedron. The dimension of a cell and its dual cell are necessarily complementary:
if p = dim cell(A) and q = dim cell∗(A), then p + q = d. The (weighted) Delaunay
mosaic of B, denoted Del(B), is the collection of dual cells. Figure 1 illustrates the
concepts by drawing a Voronoi tessellation and the corresponding Delaunay mosaic
on top of each other.

In R
d , we call a Voronoi tessellation simple if every p-dimensional cell is face of

exactly q + 1 = d − p + 1 top-dimensional cells, and we call a Delaunay mosaic
simplicial if every q-dimensional dual cell is the convex hull of q+1 points. Clearly, a
Voronoi tessellation is simple iff the corresponding Delaunay mosaic is simplicial. We
stress that this paper does not assume that Vor(B) be simple and Del(B) be simplicial,
and we introduce these notions primarily to clarify the difference between the generic
and the non-generic situation.

Besides Vor(B) and Del(B), we will be interested in subcomplexes and subsets of
these complexes. To stress the difference, we note that a subcomplex is closed under
taking faces, while a subset does not necessarily enjoy this property. We call a subset
open if it is closed under taking cofaces. As an example consider a subset K ⊆ Vor(B)

and let K ∗ ⊆ Del(B) contain cell∗(A) iff cell(A) ∈ K . Clearly, K is a subcomplex
of the Voronoi tessellation iff K ∗ is an open subset of Del(B), and vice versa. While
the cells of a polyhedral complex in R

d may intersect, their interiors are disjoint and
partition the union of the cells. We define the underlying space of a subset K of a
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Fig. 1 The overlay of a pink Voronoi tessellation and its dual blueDelaunay mosaic of a periodic set within
the unit square in R2. The tessellation is not simple as there are vertices incident to more than three edges.
Correspondingly, the mosaic is not simplicial as there are regions with more than three edges

polyhedral complex as the union of interiors of its cells:

|K | = {x ∈ R
d | x ∈ int τ for some τ ∈ K }.

If K is a subcomplex, then this is just the union of cells, but if K is not a subcomplex,
then the union of interiors is a strict subset of the union of cells.

2.2 Polarity

We introduce the paraboloid function, � : Rd → R, defined by �(x) = ‖x‖2/2
and we are interested in the polarity with respect to this paraboloid, which associates
a point u = (u1, u2, . . . , ud+1) in R

d+1 to the hyperplane of points x ∈ R
d+1 that

satisfy xd+1 = u1x1 + · · · + ud xd − ud+1. We denote this hyperplane by u∗, we call
u∗ the polar hyperplane of u (with respect to � ), and we call u = (u∗)∗ the polar
point of u∗ (with respect to � ). Importantly, the transform preserves incidences, that
is: u ∈ v∗ iff v ∈ u∗ for any two points u, v ∈ R

d+1. The transform also preserves
sidedness, which we introduce by saying that u lies below, on, above v∗ if ud+1 is less
than, equal to, greater than v1u1 + · · · + vdud − vd+1. Specifically, u is above v∗ iff v

is above u∗, and together with the preservation of incidences, this implies u is below
v∗ iff v is below u∗.

To express the relation between the Voronoi tessellation and the Delaunay mosaic
in terms of the polarity transform, we map every weighted point in Rd ×R to a point
and a hyperplane in R

d+1. For a = (pa, wa), we introduce fa, ga : Rd → R defined
by

fa(x) = ‖pa‖2
2

− wa

2
, (1)
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ga(x) = 〈pa, x〉 − fa(x), (2)

calling (pa, fa(pa)) the lifted point and img ga = ga(Rd) the polar hyperplane of a.
It is not difficult to verify that the average of the two maps on pa gives us the value of
� on pa :

fa(pa) + ga(pa)

2
= ‖pa‖2

2
= �(pa). (3)

Returning to the connection with the weighted points, the zero-set of ga −� consists
of the points x ∈ R

d for which

ga(x) − �(x) = −‖x − pa‖2
2

+ wa

2
= −πa(x)

2
(4)

vanishes. In words, the zero-set of ga − � is also the zero-set of the power distance,
πa , namely the sphere with center pa and squared radius wa . We call two weighted
points a = (pa, wa) and b = (pb, wb) orthogonal if ‖pa − pb‖2 = wa + wb. It is
a straightforward exercise to show that this is equivalent to ga(pb) = fb(pb) or, in
words, that the lifted point of b lies on the hyperplane of a. If both weights are positive,
Pythagoras’ theorem implies that the zero-sets of πa and πb—which are spheres with
squared radii wa and wb—intersect orthogonally.

Next, we generalize the relations between points and hyperplanes to collections
A ⊆ R

d × R whose projections to R
d are affinely independent. Write flat(A) for

the affine hull of the locations: flat(A) = aff {pa | a ∈ A}, and sol(A) for the set
of points x ∈ R

d that satisfy ga(x) = gb(x) for all a, b ∈ A. For example, if
A = {a = (pa, wa)}, then flat(A) = pa and sol(A) = R

d . Writing #A = q + 1 and
p = d − q, we observe that

– dim flat(A) = q and dim sol(A) = p,
– flat(A) and sol(A) are orthogonal affine subspaces of Rd , and we write y = y(A)

for the intersection point.

Indeed, if all weights are zero, then sol(A) is the set of centers of spheres that pass
through all points of A. This set is a p-dimensional affine subspace of Rd orthogonal
to the q-dimensional affine hull of A. When we adjust the weight of a ∈ A, this
affine subspace does not change other than by moving parallel to its initial position.
So flat(A) and sol(A) retain the two properties stated above.

In addition to the two affine subspaces, we introduce two affine functions,
f A : Rd → R and gA : Rd → R, that generalize fa and ga as defined in (1) and (2).
Specifically, f A agrees with fa at pa for every a ∈ A and its restriction to sol(A) is
constant. Similarly, gA agrees with ga within sol(A) for every a ∈ A and its restriction
to flat(A) is constant. Recall that y(A) = sol(A) ∩ flat(A).

Lemma 2.1 (common maximum) Let A ⊆ R
d ×R be a set of weighted points whose

locations are affinely independent. Then y = y(A) is the unique common maximum
of
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(i) the restriction of fA − � to flat(A),
(ii) the restriction of gA − � to sol(A),
(iii) the average, [ fA+gA]/2−� , and in this case the value of themaximum equals 0.

Proof Webegin bymapping every location x ∈ flat(A) to aweighted point u ∈ R
d×R

with pu = x andwu = 2�(x)−2 f A(x). Using (1), we note that fu(x) = ‖pu‖2/2−
wu/2 = f A(x). Similarly, we map every location x ∈ sol(A) to v ∈ R

d × R with
pv = x and wv = 2�(x) − 2gA(x), noting that fv(x) = gA(x). By construction,
gu : Rd → R agrees with gA on sol(A) and, symmetrically, gv : Rd → R agrees
with f A on flat(A). Hence, ‖pu − pv‖2 = wu + wv , which for positive weights is
equivalent to the zero-sets of πu and πv intersecting orthogonally. Observe that this is
true for all pairs (pu, pv) ∈ flat(A) × sol(A), so we have what for two lines in R

2 is
sometimes called a coaxal system [19].

If we now fix v with pv ∈ sol(A), we get u with minimum weight by minimizing
‖pv − pu‖2. This minimum is attained for pu = y, and since wu = 2�(pu) −
2 f A(pu), this implies that y maximizes f A − � , as claimed in (i). The proof of (ii) is
symmetric.

While we considered only the restrictions of f A and gA to affine subspaces, they
are defined on the entire R

d . Hence, the map f : Rd → R sending x to f (x) =
[ f A(x)+gA(x)]/2 is well defined. It is affine since f A and gA are affine. Letting x ′ and
x ′′ be the orthogonal projections of x ∈ R

d onto flat(A) and sol(A), respectively, we
have f (x) = [ f A(x ′)+gA(x ′′)]/2. At the intersection of the two affine subspaces, we
have f (y)−�(y) = 0 by (3). At every other point x ∈ R

d , f (x)−�(x) < 0, simply
because f A(x ′)−�(x ′) ≤ f A(y)−�(y) by (i) and gA(x ′′)−�(x ′′) ≤ gA(y)−�(y)
by (ii), with strict inequality at least once as otherwise x ′ = x ′′ = y would imply
x = y. This proves (iii). ��
We note that (iii) implies that the graph of [ f A + gA]/2 is the unique hyperplane in
R
d+1 that touches the graph of � at the point (y,�(y)).

2.3 Projection of Envelopes

Since the Voronoi tessellation is defined in terms of minimum power distance, it
can equally well be defined in terms of maximum affine function values; see (4).
Specifically, let env : Rd → R be the upper envelope of the affine maps:

env(x) = max
a∈B ga(x),

and call the linear pieces of this envelope the faces of env. It is not difficult to see
that there is a bijection between the faces of env and the cells of Vor(B) such that
every cell is the vertical projection of the corresponding face toRd . This property was
known already to Voronoi [21].

A similar construction exists for Delaunay mosaics, which is usually phrased in
terms of the convex hull of the points (pa, fa(pa)) in R

d+1. Since we assume that
the set is periodic, the convex hull is a convex polyhedron whose boundary projects
bijectively to Rd . It is not difficult to see that there is a bijection between the faces of
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this polyhedron and the cells of Del(B) such that every cell is the vertical projection
of the corresponding face to R

d . We introduce end : Rd → R whose graph is the
boundary of the polyhedron. Since it is convex, there is a set C ⊆ R

d × R such that
end(x) = maxc∈C gc(x). This set of weighted points is periodic because the Voronoi
tessellation of a periodic set is periodic. Now we have complete symmetry and can
write Del(B) = Vor(C) as well as Vor(B) = Del(C). We call C the polar set of B
and, symmetrically, B the polar set of C .

2.4 Discrete Morse Theory

Letting K be a polyhedral complex inRd , we call f : K → R a discrete function. It is
monotonic if f (ν) ≤ f (μ) whenever ν is a face of μ in K , and it is anti-monotonic if
− f is monotonic. For every t ∈ R, we call f −1(t) a level set, f −1(−∞, t] a sublevel
set, and f −1[t,∞) a superlevel set of f . For completeness, we start by introducing the
terminology of discrete Morse theory [10], which we adapt to polyhedral complexes.

The Hasse diagram of K is the directed graph whose nodes are the cells of K ,
with an arc from ν to μ if ν ⊆ μ and dim ν = dimμ − 1. We note that f : K → R

is monotonic iff the values along every directed path of the Hasse diagram are non-
decreasing. A step of f is a connected component of the Hasse diagram restricted to
a level set of f , and we write ∇ f for the collection of steps, which partitions K . We
construct the step graph by taking the steps in∇ f as nodes and drawing an arc from I
to J if there are cells ν ∈ I and μ ∈ J such that the Hasse diagram has an arc from ν

toμ. In other words, the step graph is obtained from the Hasse diagram by contracting
every arc whose endpoints are cells that share the function value. It follows that the
values along every directed path of the step graph are strictly increasing.

A monotonic f : K → R is a discrete Morse function if every step is either a
pair or a singleton. This definition is insignificantly stronger than in [10], where the
functions that map the cells of every pair to a common value are referred to as flat
discreteMorse functions. The singletons contain the critical cells and the pairs contain
the non-critical cells of f . Following the convention in smooth Morse theory [17],
where the index of a critical point is indicative of the effect of advancing the sublevel
set beyond its value, we call the dimension of a critical cell its index. Indeed, at a
critical step of index p, the homotopy type of the sublevel set changes by attachment
of a p-cell [11, Lem. 2.7]. In contrast, removing the two cells of a pair {ν, μ}—which
is allowed only if the result is still closed—has no effect on the homotopy type [11,
Lem. 2.6].

To generalize the concept, we call a subset J ⊆ K an interval if there are cells
α, ω ∈ K such that J = {ν ∈ K | α ⊆ ν ⊆ ω}. In words, the interval has a unique
lower bound, α, and a unique upper bound, ω, and consists of all faces of ω that have
α as a face. A monotonic f : K → R is a generalized discrete Morse function if every
step is an interval; see [12]. The intervals of size one contain the critical cells and all
other intervals contain the non-critical cells of f . Removing the cells of an interval of
size larger than one from K is referred to as a collapse, which is allowed only if the
result is still closed.
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7 36 25 4
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8 0 1

Fig. 2 A line shelling of a convex polygon in the plane. The vector spanning the line is generic as its
intersections with the lines that contain the edges are distinct

2.5 Partitioning Steps into Pairs

In the simplicial case, the Hasse diagram restricted to an interval is isomorphic to the
1-skeleton of a cube of the appropriate dimension. A maximal set of parallel edges
of this cube corresponds to a partition of the interval into pairs; that is: into intervals
of size 2. In the polyhedral case, such a partition is not quite as obvious, but it exists.
It is convenient to prove this as a corollary of a more general claim, which we now
formulate.

Let P ⊆ R
d be a convex polytope with non-empty interior, assume without loss

of generality that 0 ∈ int P , and let u ∈ S
d−1 be a direction. We say u is generic if

the line of points λu, λ ∈ R, intersects the affine hull of every facet of P , and these
intersections are distinct. Assuming a generic direction, we can order the facets as
ϕ1, ϕ2, . . . , ϕn such that

1

λ1
>

1

λ2
> . . . >

1

λn
,

in which λi u is the point at which the line intersects aff ϕi ; see Fig. 2. In the literature,
this ordering is referred to as a line shelling of P [22, Sect. 8.2].

It sorts the facets in the order they become visible from a point that moves along
the line from λ = 0 to ∞. Then the point jumps from ∞ to −∞, at which time all
visible facets become invisible. Finally, the point continues the trip from λ = −∞
back to 0, and the facets are sorted in the order they become invisible. To extend the
ordering to all faces of P , we set

κ(P) = ∞,

κ(ϕi ) = 1

λi
for all facets of P,

κ(ψ) = min
ψ⊆ϕ

κ(ϕ) for all faces of dimension −1 ≤ p ≤ d − 2 of P.

The partial line shelling of P for u and t ∈ R is the collection K (t) of faces ψ of
P with κ(ψ) ≥ t . For t > κ(ϕ1), K (t) = {P}, for t ≤ κ(ϕ1), K (t) contains at least
two faces of P , namely P and ϕ1, and for t ≤ κ(ϕn), K (t) is the entire face complex,
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including ∅. In general, K (t) is an open set of faces: for every ψ ∈ K (t) all faces that
contain ψ are in K (t).

Lemma 2.2 (partition into pairs) Let P ⊆ R
d be a convex d-polytope, u ∈ S

d−1 a
unit vector, and t ∈ R. Then the partial line shelling, K (t), either contains only one
face of the polytope, namely P, or it can be partitioned into pairs (ψ, ϕ) with ψ ⊆ ϕ

and dimψ = dim ϕ − 1.

Proof Assuming u is generic, we use induction on d. For d = 1, P is a closed line
segment with vertices ϕ1 and ϕ2. Assuming 0 ∈ int P , we have ϕ1 > 0 and ϕ2 < 0.
The ordering for u = 1 is P;ϕ1;ϕ2,∅, in which we use semicolons and colons to
separate faces with different and with equal κ values. There are only three partial line
shellings, namely {P}, {P, ϕ1}, and {P, ϕ1, ϕ2,∅}, and the latter two can be partitioned
into pairs.

Assume inductively that all partial line shellings of convex polytopes of dimension
p < d and cardinality at least 2 can be partitioned into pairs, and consider a d-
dimensional convexpolytope, P . For a generic vectoru ∈ S

d−1, the differencebetween
two contiguous partial line shellings of P is the partial line shelling of a facet, ϕi . For
i = 1, this partial line shelling has size 1, and we combine it with P to get a pair. For
i > 1, this partial line shelling has size at least 2. To see this, we note that ϕi shares at
least one (d − 2)-face with a previously encountered facet of P , and this (d − 2)-face
gets the same value of κ as ϕi . By inductive assumption, this partial shelling can be
partitioned into pairs, which proves the claim for generic directions.

For a non-generic direction, u, we can find a generic perturbation, u′ ∈ S
d−1, such

that the difference between two contiguous partial line shellings of P for u is a disjoint
union of such differences for u′. Again we get a partition into pairs by induction. ��

Recall that an interval in a polyhedral complex, K , is defined by a pair α ⊆ ω and
consists of all cells ν that satisfy α ⊆ ν ⊆ ω. Here, ω is the polytope P of the above
discussion, and the vector u is chosen so that the line it spans passes through the
interior of α. With this choice, the interval is a partial line shelling of ω, which can
be partitioned into pairs by Lemma 2.2. We note that this implies that if L can be
obtained from K by a sequence of possibly non-elementary collapses, then K and L
have the same homotopy type.

3 Continuous Functions

In this section, we consider two piecewise quadratic functions, whose pieces define
the Voronoi tessellation and its dual Delaunay mosaic. While the main message of this
paper is that the two are of the same kind, we use the words ‘tessellation’ and ‘mosaic’
to verbally break the symmetry. The main result is that these two functions and their
piecewise linear average have the same critical points.
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del

vor

env
end

sd

Fig. 3 The paraboloid function, the two envelope functions, and their piecewise quadratic and piecewise
linear differences. Only three of the defining points are shown, two with weight 0, and the point in the
middle with negative weight

3.1 Piecewise Quadratic and Piecewise Linear Functions

Recall that env, end : Rd → R are piecewise linear convex functions. Comparing
them with � , we get two piecewise quadratic functions, vor, del : Rd → R, and one
piecewise linear function, sd : Rd → R, defined by

vor(x) = �(x) − env(x), (5)

del(x) = end(x) − �(x), (6)

sd(x) = end(x) − env(x)

2
= del(x) + vor(x)

2
. (7)

As illustrated in Fig. 3, del dominates vor, which implies that their average, sd, is
sandwiched between them.

To prove this formally, we introduce the common subdivision of the tessellation and
the mosaic, denoted Sd(B), which consists of all cells γ = τ ∩ σ ∗ with τ ∈ Vor(B)

and σ ∗ ∈ Del(B). Since τ and σ ∗ are convex, so is γ . The restrictions of del and vor
to γ are quadratic, while the restriction of sd to γ is linear.

Lemma 3.1 (sandwich) Let B ⊆ R
d × R be a Delone set of weighted points. Then

del(x) ≥ sd(x) ≥ vor(x) for every x ∈ R
d .

Proof Let a ∈ R
d × R such that fa(pa) = env(pa). The lifted point of a lies above

the hyperplane of b, which implies fa(pa) ≥ gb(pa) for all b ∈ B, with equality at
least once. Since the polarity transform preserve sidedness, we have fb(pb) ≥ ga(pb),
for all b ∈ B, and therefore end(y) ≥ ga(y) for all y ∈ R

d , which includes y = pa .
Writing x = pa , this implies

del(x) − vor(x) = end(x) + env(x) − 2�(x) ≥ ga(x) + fa(x) − 2�(x),
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Fig. 4 The black level set of sd splits the white channel into two. The corresponding superlevel set of vor
is orange and the sublevel set of del is blue

in which the right-hand side vanishes because of (3). This implies the claimed inequal-
ities. ��
The inequalities in Lemma 3.1 imply that the sublevel sets and the superlevel sets of
the three functions are nested:

del−1(−∞, t] ⊆ sd−1(−∞, t] ⊆ vor−1(−∞, t], (8)

del−1[t,∞) ⊇ sd−1[t,∞) ⊇ vor−1[t,∞). (9)

Figure 4 illustrates the sublevel set of del and the superlevel set of vor, for a common
value t , together with the channel between these two sets. We will see shortly that the
three functions share the critical points, at which they all agree.

3.2 Three Auxiliary Results

Weneed auxiliary results to prove that the functions defined in (5)–(7) share the critical
points and values, three of which will be presented in this subsection. The first is a new
combinatorial statement about Voronoi tessellations and Delaunay mosaics, which is
interesting in its own right.

Theorem 3.2 (excluded crossing) Let B ⊆ R
d × R be a Delone set of weighted

points, let μ �= ν be cells in Vor(B) and recall that μ∗, ν∗ are their dual cells in
Del(B). If intμ ∩ ν∗ �= ∅, then int ν ∩ μ∗ = ∅.
Proof To reach a contradiction, assume that both intersections are non-empty, so we
can choose points x ∈ intμ ∩ ν∗ and y ∈ int ν ∩ μ∗. Since the interiors of μ and
ν are disjoint, we have x �= y. Let M, N ⊆ B be such that μ = cell(M) and
ν = cell(N ). By definition of a cell, x has the same power distance from all a ∈ M ,
and a strictly larger power distance from all b ∈ B \ M . Write RM = πa(x) with
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a ∈ M , and write RN = πc(y) with c ∈ N . Assume without loss of generality that
RN ≥ RM . Then every weighted point a ∈ M satisfies πa(y) ≥ RN ≥ RM = πa(x),
so ‖y − pa‖ ≥ ‖x − pa‖. Drawing the perpendicular bisector of x and y, this implies
that all pa with a ∈ M lie in the closed half-space that contains x . Since y lies outside
this half-space, it is not contained in the convex hull of the pa with a ∈ M , but this
contradicts y ∈ μ∗. ��
Weremark thatwe take the interiors ofμ and ν so that the twohypothesized intersection
points are different. This detail is a crucial aspect of the proof. Indeed, it is possible
to have μ ∩ ν∗ �= ∅ and ν ∩ μ∗ �= ∅: let ν∗ be a right-angled triangle in R2 and μ∗ its
longest edge. Then ν is the circumcenter of the triangle, which lies on μ∗, and μ has
ν as an endpoint.

Write Sd−1 for the unit sphere in R
d . The second result is a geometric statement

about the common intersection of hemispheres, which are closed subsets of Sd−1

bounded by great-spheres of dimension d − 2. Note that a unit vector, e ∈ S
d−1,

defines both a point as well as a hemisphere, namely the one whose points y ∈ S
d−1

satisfy 〈e, y〉 ≤ 0.

Lemma 3.3 (hemispheres) The common intersection of a collection of hemispheres
of Sd−1 is either contractible or a (p− 1)-dimensional great-sphere with 0 ≤ p ≤ d.

Proof Let E ⊆ S
d−1 be the set of vectors defining the hemispheres in the given

collection. If E �= ∅ and there is a point x ∈ S
d−1 with 〈e, x〉 < 0 for all e ∈ E , then

the hemispheres have a non-empty and contractible common intersection. Otherwise,
let x ∈ S

d−1 such that 〈e, x〉 ≤ 0, for all e ∈ E , with equality for a minimum number
of vectors. If x does not exist, then the intersection of hemispheres is empty, which is
the case p = 0 in the claimed statement. When x exists, it may not be unique, but the
vectors e for which the scalar product vanishes are unique. Similarly, the linear span
of these vectors is unique, and letting 0 ≤ d − p ≤ d be its dimension, the common
intersection of the hemispheres is a (p−1)-dimensional great-sphere. The case p = d
corresponds to an empty collection of hemispheres so that the common intersection
is the entire Sd−1. ��
The third result is an elementary fact in linear algebra. For 1 ≤ i ≤ k, let gi : Rd → R

be a linear function with gradient ∇gi ∈ R
d ; that is: gi (x) = 〈x,∇gi 〉 for all x ∈ R

d .
Note that the gradient of a linear combination of the gi is the linear combination of
the gradients with the same coefficients. Indeed,

k∑

i=1

αi gi (x) =
k∑

i=1

αi 〈x,∇gi 〉 =
〈
x,

k∑

i=1

αi∇gi

〉
.

The linear combination is an affine combination if
∑k

i=1 αi = 1. The gradients of the
family of affine combinations of the gi are thus the affine combinations of the ∇gi .
This is a plane of some dimension between 0 and d. Whatever its dimension, this plane
contains a unique point at minimum distance from the origin. In other words, there is
a unique affine combination of the gi with shortest gradient.
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0Q

P

Q 0

P

Fig. 5 The map ψ : ∂ (P × Q) → S
1 illustrated for two intersecting line segments on the left and for two

disjoint line segments on the right. For better visualization, we draw (y − z)/2 instead of ψ(s) and anchor
the vector at the point s/2 on the boundary of (P × Q)/2. In addition, we highlight the in-links in green

Lemma 3.4 (shortest gradient) Let gi : Rd → R be linear functions for 1 ≤ i ≤ k,
and let g : L → R be the largest common restriction of the gi to a linear subspace.
Then the affine combination of the gi that minimizes the length of the gradient satisfies
∇ (∑k

i=1 αi gi
) = ∇g.

Proof Since g is the restriction of gi to L , we have 〈∇gi ,∇g〉 = 〈∇g,∇g〉; that is:
∇g is the projection of ∇gi onto the line spanned by ∇g. This is true for all 1 ≤ i ≤ k
and therefore also for any affine combination of the gi :

〈
∇

(
k∑

i=1

αi gi

)
,∇g

〉
=

k∑

i=1

αi 〈∇gi ,∇g〉 = 〈∇g,∇g〉.

It follows that the gradient of any affine combination has length at least ‖∇g‖, and the
affine combination whose gradient agrees with the gradient of g minimizes the length
of the gradient. ��

3.3 In- and Out-Links

This subsection presents two topological results about vector fields defined by convex
polytopes, P, Q ⊆ R

d , whose dimensions are complementary, p = dim P and q =
dim Q with p + q = d, and whose affine hulls intersect in a single point. We write
P×Q for theMinkowski sum,which is a convex polytope of dimension d. Its boundary
is a topological (d−1)-sphere, which can be seen as the union of a thickened (p−1)-
sphere and a thickened (q − 1)-sphere: ∂ (P × Q) = (∂P × Q) ∪ (P × ∂Q). Indeed,
for every s ∈ ∂ (P×Q), there are unique points y ∈ P and z ∈ Q such that s = y+ z,
and at least one of y and z belongs to the respective boundary. We are interested in
ψ : ∂ (P × Q) → S

d−1 defined by mapping s = y + z to ψ(s) = (y − z)/‖y − z‖;
see Fig. 5 for an illustration.

The significance of this choice of vector field will become clear shortly. To studyψ ,
we consider the normal cone of a point s ∈ ∂ (P × Q), denoted n(s), which is the
collection of vectors v ∈ S

d−1 such that 〈v, x − s〉 ≤ 0 for all x ∈ P × Q. Using this
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notion, we introduce the in-link and out-link of P and Q:

inLk(P, Q) = {s ∈ ∂ (P × Q) | ∃v ∈ n(s) with 〈ψ(s), v〉 ≤ 0},
outLk(P, Q) = {s ∈ ∂ (P × Q) | ∃v ∈ n(s) with 〈ψ(s), v〉 ≥ 0}.

By construction of ψ , a facet of P × Q either belongs to the in-link in its entirety, or
none of the points in its interior belong to the in-link. Furthermore, a face of P × Q
belongs to the in-link iff it is a face of a facet in the in-link. This implies that the in-link
is a union of (closed) facets. By symmetry, so is the out-link. In the left panel of Fig. 5,
the in-link consists of the left edge and the right edge of the product, while the out-link
consists of the remaining two edges. Both have the homotopy type of the 0-sphere.
In the right panel, the in-link is the union of three edges, with the out-link containing
the remaining, top edge. Both links are contractible. The important difference is that
P and Q intersect in the left panel while they are disjoint in the right panel.

Lemma 3.5 (in- and out-link) Let P, Q ⊆ R
d be convex polytopes with affine hulls

of complementary dimensions, p = dim P, q = dim Q, and p+q = d, that intersect
in a single point. Then

int P ∩ int Q �= ∅ �⇒ inLk(P, Q) � S
q−1, outLk(P, Q) � S

p−1, (10)

P ∩ Q = ∅ �⇒ inLk(P, Q) and outLk(P, Q) contractible, (11)

int P ∩ int Q = ∅ and P ∩ Q �= ∅
�⇒ inLk(P, Q) or outLk(P, Q) contractible.

(12)

Proof Assume without loss of generality that the affine hulls of P and Q intersect at
0 ∈ R

d . Every facet E of R = P × Q is either of the form F × Q or P ×G, in which
F and G are facets of P and Q, respectively. Whether or not E belongs to the in-link
or the out-link depends on the relative position of E and 0, and the rule is opposite for
the two forms. To explain, we let v the unit normal of E and call E visible or invisible
(from 0) if 〈v, s〉 is non-positive or non-negative, respectively, for every s ∈ E . We
observe that inLk(P, Q) contains all visible facets of the form E = F × Q and all
invisible facets of the form E = P × G, while outLk(P, Q) contains all invisible
facets of the first type and all visible facets of the second type.

In the first case, when int P ∩ int Q �= ∅, 0 belongs to the interior of R. Hence
none of the facets of R are visible and all facets are invisible, which implies that the
in-link is P × ∂Q, which has the homotopy type of a (q − 1)-sphere. Symmetrically,
the out-link is ∂P × Q, which has the homotopy type of the (p − 1)-sphere. This
proves (10).

To prepare the second case, consider a q-dimensional convex polytope Q in R
q .

Letting H be a hyperplane (in Rq ) that separates 0 from Q, we can apply a projective
transformation that maps H to infinity, 0 to another point 0′, and Q to another convex
polytope Q′, all in R

q . We may imagine this transform moves H to infinity, pushing
0 in front of it to disappear to infinity and then return from the other side. Importantly,
a facet of Q is visible (invisible) from 0 iff the corresponding facet of Q′ is invisible
(visible) from 0′. We will make use of this construction shortly.
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P

u uQ

Fig. 6 The cube on the left is the product of a line segment and a square that intersect inside the cube. The
octahedron on the right is dual to the cube. The dotted level set of sd passes through this intersection point
and splits the vertices of the octahedron depending on whether they have larger or smaller value of sd than u

In the second case, when P ∩ Q = ∅, not all facets of R are invisible. Since
0 /∈ R, it is outside at least one of P and Q, and we assume without loss of generality
0 /∈ Q. To distinguish the two types of facets of R, we consider P and Q within
their respective affine hulls. Specifically, there is a bijection between the visible facets
of R, on the one side, and the visible facets of P inside aff P and of Q inside aff Q,
on the other side. For the in-link, we need the visible facets of P and the invisible
facets of Q, so we apply a projective transformation that maps Q to Q′ and 0 to 0′—
all still in aff Q—such that a facet of Q is invisible from 0 iff the corresponding
facet of Q′ is visible from 0′. We do the transformation within aff Q, so it does not
affect P . We get a new product, R′ = P × Q′ and we are interested in the part of the
boundary that is visible from 0′. Since R′ is convex and 0′ /∈ R′, this part of ∂R′ is
contractible, which implies that the corresponding part of ∂R, which is inLk(P, Q),
is also contractible. Symmetrically, the invisible part of ∂R′ is contractible, which
implies that outLk(P, Q) is also contractible. This proves (11).

In the third case, when int P ∩ int Q = ∅ and P ∩ Q �= ∅, 0 belongs to ∂R. The
facets that contain 0 are both visible and invisible (from 0). Assume without loss of
generality that 0 ∈ ∂Q. Then we can move 0 to some point 0′, still within aff Q but
slightly outside Q, in such a way that a facet of Q is visible from 0 iff it is visible
from 0′. Now we are in the second case as far as the visible facets of Q are concerned,
which implies that the out-link of P and Q is contractible. This proves (12). Note that
this construction is not symmetric, as moving 0 to 0′′ inside Q preserves the invisible
facets of Q but does not imply a contractible in-link. However, we need only one
contractible link, which completes the proof. ��

In the application of Lemma 3.5, P × Q will be dual to the local neighborhood of a
vertex u ∈ Sd(B). In Fig. 6, the local neighborhood of u is drawn as the dual polytope
of P × Q, denoted D = D(P, Q), whose (p − 1)-dimensional faces correspond to
the p-dimensional cells of Sd(B) that share u. The d-cells among them correspond to
the vertices of P × Q, and letting γ be such a d-cell and s the corresponding vertex,
we will see that ψ(x) ∈ S

d−1 is the normalized gradient of sd restricted to γ . The
edges of Sd(B) that share u correspond to the facets of P × Q, and as discussed in
Lemma 3.4, the gradient of sd restricted to such an edge is an affine combination of
the gradients of sd restricted to the d-cells that share the edge. The gradient either
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points from u to the other endpoint of the edge, or from that endpoint to u. We can
therefore label the vertices of D as having a larger or smaller value of sd than u. In the
generic case, this splits the vertices into V � W . Write F(V ) for the full subcomplex
of ∂D with vertices V , which consists of all faces of D whose vertices all belong to V .
Symmetrically, F(W ) is the full subcomplex of ∂D with vertices W .

Lemma 3.6 (full subcomplexes) Let P × Q be a d-dimensional polytope in R
d , in

which P and Q are a p- and a q-dimensional convex polytope with p + q = d, and
let D = D(P, Q) be the dual polytope. After assigning vectors to the surface points
as explained above, we have

inLk(P, Q) � F(W ) and outLk(P, Q) � F(V ).

Proof It suffices to prove the first homotopy equivalence. A facet of P × Q belongs
to the in-link iff the corresponding vertex of D belongs to W . The full subcomplex
of ∂D with vertices W is the nerve of the covering of inLk(P, Q) by its facets. The
nerve lemma implies that the two have same homotopy type. ��

3.4 Up- and Down-Links

Since the continuous functions we study are not smooth, it is necessary to define what
we mean by a critical point. We need a definition that is general enough to apply to
piecewise linear and to piecewise quadratic functions. Letting f : Rd → R be such
a function and x ∈ R

d , we write Sr = Sr (x) for the (d − 1)-sphere with radius
r > 0 and center x . Letting S−

r contain all y ∈ Sr with f (y) ≤ 0, we note that its
homotopy type is the same for all sufficiently small radii. Fixing a sufficiently small
ε > 0, we call S−

ε the down-link of x and f , denoted dnLk(x, f ). Symmetrically, S+
r

contains all points y ∈ Sr with f (y) ≥ 0, and we call S+
ε the up-link of x and f ,

denoted upLk(x, f ). We call x a non-critical point of f if at least one of the two links
is contractible. All points with topologically more complicated up- and down-links
are critical points of f , where we note that the empty link is not contractible. See
Fig. 7 for the local pictures that arise for a 2-dimensional piecewise linear function. In
the generic case, the down-link is contractible iff the up-link is contractible. The “at
least one” rule is used to classify borderline cases as non-critical. An example is the
southern hemisphere as the down-link and the northern hemisphere together with the
south-pole as the up-link.

To study the critical points of f = vor, we fix x ∈ R
d and let A ⊆ B be the

subset of weighted points such that x ∈ int cell(A). Setting h2 = vor(x), x lies on
the boundary of vor−1(−∞, h2], which is a union of closed balls, namely the balls
with centers pa and squared radii wa + h2, for a ∈ B. Specifically, by definition of
cell(A), x lies on the boundary of such a ball if a ∈ A, and it lies outside the ball if
a ∈ B \ A. We get the two links by intersecting the union and its closed complement
with a sphere of sufficiently small radius ε:

dnLk(x, vor) = Sε(x) ∩ vor−1(−∞, h2],
upLk(x, vor) = Sε(x) ∩ vor−1[h2,∞).
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Fig. 7 From left to right: typical patterns of level sets in the neighborhood of a non-critical point, aminimum
(index 0), a saddle (index 1), and a maximum (index 2) in two dimensions. The corresponding down-link is
a single contractible arc, empty, two disjoint contractible arcs, and the full circle, respectively. The patterns
are cut out of the larger context in Fig. 11 (d), where the middle level set is shown using thin black lines

For each a ∈ A, the intersection of Sε(x) with the ball defined by a and h2 is a
closed cap that approximates the complement of a hemisphere arbitrarily closely. The
down-link is then the union of the caps defined by the points in A. By Lemma 3.3,
there are only d + 2 homotopy types for dnLk(x, vor), namely either contractible
or a (thickened) (q − 1)-dimensional great sphere for 0 ≤ q ≤ d. Symmetrically,
there are only d + 2 homotopy types for upLk(x, vor), namely either contractible or
a (thickened) (p − 1)-dimensional great sphere with p = d − q. If at least one of the
two links is contractible, then x is a non-critical point of vor, and otherwise, it is a
critical point with index q. The symmetric argument applies to del, so x can be either
a non-critical point of del or a critical point. In this particular case, we have only d +1
types of critical points, characterized by p + q = d. In these few cases, we call q the
index of the critical point.

3.5 Coincidental Critical Points

Recall that del(x) ≥ sd(x) ≥ vor(x) by Lemma 3.1. We strengthen this result by
proving further connections between the three functions. Specifically, we prove that
every point x ∈ R

d is of the same type for vor, del, and their average, sd. Let γ = τ∩σ ∗
be a d-dimensional cell, with b ∈ B and c ∈ C such that τ = cell(b) and σ ∗ = cell(c).
The restriction of sd to γ satisfies

sd(x) = del(x) + vor(x)

2

= −πc(x)/2 + πb(x)/2

2
= 〈x, pc − pb〉

2
+ const.

(13)

Hence, pc − pb is twice the gradient of sd at every point in int γ . We use this insight
together with Lemma 3.4 to prove the main result of this section.

Theorem 3.7 (coincidental critical points) Let B ⊆ R
d × R be a Delone set of

weighted points. Then x ∈ R
d is a critical point of vor : Rd → R iff it is a criti-

cal point of del : Rd → R iff it is a critical point of sd : Rd → R, and in this case
del(x) = sd(x) = vor(x) and the index of x is defined and the same for all three
functions.
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Proof We prove that x ∈ R
d is a critical point (of vor, del, and sd) iff x = int ν∩ int ν∗

for a cell ν ∈ Vor(B) and its dual cell ν∗ ∈ Del(B), and that the index of such a
critical point is q = dim ν∗. Furthermore, del(x) = sd(x) = vor(x) in this case by
Lemma 2.1.

We begin with f = vor, which maps every x ∈ R
d to half the smallest power

distance to a weighted point in B. The restriction of vor to a Voronoi cell ν is also the
restriction of a quadratic function on aff ν to ν. This quadratic function has a unique
minimum, namely at y = aff ν ∩ aff ν∗. The only possibility for a point x ∈ int ν to
be a critical point of vor is therefore x = y. This implies that int ν ∩ aff ν∗ �= ∅ is
necessary for x to be critical. Symmetrically, aff ν ∩ int ν∗ �= ∅ is necessary, which
implies that int ν ∩ int ν∗ �= ∅ is necessary. It is easy to see that the latter condition is
also sufficient because vor increases along all directions within aff ν and it decreases
in all other directions. The index is the dimension of the affine subspace within which
x is a maximum of f , which is q = dim ν∗, as claimed. The argument for f = del
is symmetric and therefore omitted. The index is still q, and not p as suggested by
symmetry, because del maps every x ∈ R

d to the negative of the smallest power
distance to a weighted point in C .

The argument for f = sd is more involved. Since this function is piecewise linear,
the only possible critical points are the vertices of Sd(B). We assume that cells ν and
μ∗ with complementary dimensions have interiors that are either disjoint or intersect
in a single point, which is therefore a vertex of Sd(B). Writing u = int ν ∩ intμ∗, we
let Sε(u) be a sufficiently small sphere centered at u. It intersects a cell of dimension
at least 1 of Sd(B) iff that cell contains u as one of its vertices. The intersections of
these cells with Sε(u) define a cell complex dual to the boundary complex of P × Q,
in which P = μ and Q = ν∗. For every v ∈ S

d−1, we write sdv(u) for the slope of
sd at u in the direction v. The goal is to prove that the down- and up-links of u and sd
are closely related to the in- and out-links of P and Q, namely

dnLk(u, sd) � inLk(P, Q) and upLk(u, sd) � outLk(P, Q). (14)

ByLemma3.5, the in- and out-links of P and Q either have the homotopy types ofSq−1

and Sp−1, if int P ∩ int Q �= ∅, or at least one link is contractible, if int P ∩ int Q = ∅.
Assuming (14), this implies that the down- and up-links of u and sd have the homotopy
types of Sq−1 and S

p−1, if ν = μ, and at least one is contractible, if ν �= μ. Indeed,
ν �= μ together with int ν ∩ intμ∗ �= ∅ implies int P ∩ int Q = ∅ by Theorem 3.2.

We finally prove (14). Recall that every vertex of P × Q corresponds to a d-cell
of Sd(B) incident to u, and every facet corresponds to an edge incident to u. Recall
also that the map ψ : ∂(P × Q) → S

d−1 introduced in Sect. 3.3 sends every vertex
s = y + z of P × Q to ψ(s) = (y − z)/‖y − z‖. In the notation of (13), y = pc and
z = pb, so ψ(s) is a positive multiple of the gradient of sd restricted to the d-cell in
Sd(B) that corresponds to s. To continue, we assume without loss of generality that u
is the origin ofRd , we consider a facet E of P × Q, and we let e be the corresponding
edge of Sd(B) emanating from u. Observe that the gradient of the restriction of sd to
the edge e is a constant multiple of the unit normal of E . This puts us in the setting
Lemma 3.6, which implies the claimed homotopy equivalence. ��
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4 Discrete Functions

Parallel to the continuous functions studied in Sect. 3, we introduce discrete functions
on the Voronoi tessellation, the Delaunay mosaics, and their common subdivision. We
then study the structure of their steps, which we classify depending on their effect on
the homology of the sublevel set. We employ a homological instead of the stronger
homotopical viewpoint usually considered in discrete Morse theory to handle the
complicated local situations that can arise when points are not in general position.

4.1 Min andMax Functions

Taking theminimumormaximumover all points of a cell, we turn the continuous func-
tions of Sect. 3 into discrete functions. In particular, we introduce vor : Vor(B) → R,
del : Del(B) → R, and sdn,sdx : Sd(B) → R defined by

vor(τ ) = max
x∈τ∗ del(x), del(σ ∗) = min

x∈σ
vor(x),

sdn(γ ) = min
x∈γ

sd(x), sdx(γ ) = max
x∈γ

sd(x).

We note that vor is defined in terms of del and del in terms of vor. This is not
a mistake but motivated by our desire to obtain monotonic discrete functions and
staying consistent with the standard literature on alpha shapes [7,9]. It will often be
convenient to apply the discrete Voronoi and Delaunay functions to the common sub-
division. Technically, these are different functions, sdv,sdd : Sd(B) → R, defined
by sdv(γ ) = vor(τ ) and sdd(γ ) = del(σ ∗), whenever γ = τ ∩ σ ∗.

4.2 Homological Framework

As introduced in Sect. 2.4, the step graph of amonotonic function defines a partial order
on the steps. We can construct the complex by adding the steps one at a time according
to a linear extension of this partial order. To determine the effect of adding a step to
a subcomplex, we compute its relative homology, as we explain in this subsection.
We prefer homology over stronger topological notions, such as homotopy, because it
easily extends to complicated local situations and is readily computable.

Let J0, J1, . . . , Jm be a linear extension of the partial order defined by the step graph
of f : K → R. This order may or may not be consistent with the sublevel sets of f ,
in the sense that the corresponding values listed in the same order may or may not be
sorted. Write K j = ⋃

0≤i≤ j Ji , note that K j is closed, and get K j+1 = K j � J j+1 by
adding the next step. To describe how the addition of J = J j+1 affects the homology
of the complex, we consider the pair ( J̄ , J̇ ), in which J̄ = cl J is the closure and
J̇ = J̄ \ J . Since K j � J is a complex, we have J̇ = K j ∩ J̄ , which is the intersection
of two complexes and therefore a complex itself. We are interested in the relative
homology of ( J̄ , J̇ ), since it will allow us to deduce the homology of K j+1 from that
of K j . Fixing a coefficient group to compute homology,we classify the steps according
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to the ranks of the relative homology groups, which we denote as βp = rank H p( J̄ , J̇ )

for all dimensions p.

Definition 4.1 (critical step) We call J a non-critical step of f if βp = 0 for all
p ≥ 0. Otherwise, J is a critical step. It is a simple critical step of index p if all ranks
vanish except in a single dimension, p, in which βp = 1.

Critical steps with more than one non-zero Betti number or a Betti number larger than
1 does not have an index.We can, however, understand it as the combination of several
simple critical steps, namely βp such steps of index p for every βp > 0. This easy
unfolding of a complicated critical step into simple ones is one of the most compelling
reasons for using homology to build the framework for a classification of monotonic
discrete functions, which includes discrete Morse functions as a special case.

We now explain how to deduce the homology of a complex from the homology
of its predecessor and the relative homology of the step. We get the homology of
K j+1 = K j � J using the long exact sequence of a pair:

. . . → H p(K j ) → H p(K j+1) → H p(K j+1, K j ) → H p−1(K j ) → . . .

Note that H p(K j+1, K j ) is isomorphic to H p( J̄ , J̇ ) for every dimension p by exci-
sion. Assuming the ranks of the homology groups of K j and of ( J̄ , J̇ ) are given, there
are very few options for the ranks of K j+1 that make the sequence exact. For example,
if J is a non-critical step, then rank H p(K j+1) = rank H p(K j ) for every p. If J is a
simple critical step with index p, then either rank H p(K j+1) = rank H p(K j ) + 1 or
rank H p−1(K j+1) = rank H p−1(K j ) − 1, with equal ranks in all other dimensions.

4.3 Structure of Critical and Non-critical Steps

Note that for a discrete or generalized discrete Morse function, every critical step is
simple and indeed consists of only a single cell. In contrast, the discrete version of
a generic piecewise linear map can have non-simple critical steps, such as monkey
saddles, etc. However, these steps are still special since each has a unique lower bound,
which is a vertex.

Similarly, the discrete functions in this paper are special cases within the gen-
eral framework introduced in the previous subsection. In particular, each step of
the Delaunay function, del : Del(B) → R, has a unique upper bound, as we will
prove shortly. To include the discrete Voronoi function in this discussion, we note that
vor : Vor(B) → R is anti-monotonic, so −vor is monotonic, the above discussion
applies, and every step of vor has a unique upper bound as well. Furthermore, the
critical steps of del and vor contain a single cell each and are therefore simple, as
we now prove.

Theorem 4.2 (step structure) Every step of vor and of del has a unique upper
bound, and if it is critical, then it consists of a single cell whose dimension is equal
to the index of the step. Furthermore, if σ ∈ Vor(B) is critical, then σ ∗ ∈ Del(B) is
critical, and vor(σ ) = del(σ ∗).
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Proof We first prove that every step of del has a unique upper bound, and we omit
the proof for vor, which is symmetric. Recall that env = � − vor is piecewise linear
and convex, and observe that

del(σ ∗) = min
x∈σ

[�(x) − env(x)]. (15)

Because σ is convex, env is linear on σ , and � is strictly convex, the minimum on the
right-hand side of (15) is attained at a unique point, which we denote y = y(σ ). The
step J of del that contains σ ∗ also contains every τ ∗ ∈ Del(B) with y(τ ) = y. It
contains no other cell, else there would be a cell with two points minimizing a strictly
convex function. Let υ∗ be the unique cell in J such that υ contains y in its interior.
It follows that υ ⊆ τ for all τ ∗ ∈ J , which is equivalent to τ ∗ ⊆ υ∗ for all τ ∗ ∈ J .
Hence υ∗ is the unique upper bound of J .

We second prove that every step that contains two or more cells is non-critical. Such
a step, J , has a unique upper bound, σ ∗. Write q = dim σ ∗, and let A ⊆ B consist
of the weighted points such that σ ∗ is the convex hull of their locations. Let Sr (x) be
the smallest sphere such that πa(x) = r2 for every a ∈ A, and recall that this sphere
is unique. Because σ ∗ is an upper bound, the minimizing point, y = y(σ ), is in the
interior of σ , and therefore x = y. Furthermore, πb(x) > r2 for all b ∈ B \ A, else
the location of b would be a vertex of σ ∗ and therefore b ∈ A. All cells τ ∗ ∈ J \ {σ ∗}
are faces of σ ∗ that are visible from x . When x lies on the boundary of σ ∗, these
are the faces that contain x . In the generic case in which x /∈ σ ∗, these are the faces
τ ∗ of σ ∗ such that for every point z ∈ int τ ∗ the line segment connecting x and z
is disjoint from int σ ∗, while the line that passes through x and z has a non-empty
intersection with int σ ∗. Moreover, J contains all faces of σ ∗ that are visible from x .
By convexity of σ ∗, this implies that the union of interiors of the cells in J \ {σ ∗} is
an open (q − 1)-ball. As before, we define J̄ = cl J and J̇ = J̄ \ J . Since J̄ is a
closed q-ball and J̇ is a closed (q − 1)-ball in its boundary, the rank of H p( J̄ , J̇ ) = 0
for every dimension p. Hence, J is non-critical, which implies that every critical step
consists of a single cell, as claimed. Adding a cell of dimension q to the appropriate
sublevel set affects either the q-th or the (q − 1)-st homology group, which implies
that the index of a critical step is the dimension of its cell, again as claimed.

We finally note that σ ∈ Vor(B) and σ ∗ ∈ Del(B) are critical iff int σ ∩ int σ ∗ �= ∅.
The point where the two cells intersect is also a critical point of the corresponding
continuous functions, vor, del : Rd → R. By Theorem 3.7, vor(x) = del(x) for every
critical point, which implies vor(σ ) = del(σ ∗). ��
We observe that our definition of a critical step is consistent with that of a critical
point. An interesting detail are the borderline non-critical points, which we recall
have a contractible down-link and a non-contractible up-link, or the other way round.
Correspondingly in the discrete setting, we call τ ∈ Vor(B) a borderline non-critical
cell if τ ∩τ ∗ �= ∅ but int τ ∩int τ ∗ = ∅. A borderline non-critical cell is not critical, but
there are arbitrarily small perturbations of the weighted points in B that render such a
cell critical. Note that τ is a borderline non-critical cell of vor iff τ ∗ is a borderline
non-critical cell of del. To bring such cases in focus, we introduce a condition that
avoids them.
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Definition 4.3 (general position) A Delone set of weighted points, B ⊆ R
d × R, is

in general position if vor has no borderline non-critical cell or, equivalently, if del
has no borderline non-critical cell.

Note that this notion of general position is independent of the condition that guarantees
simple Voronoi tessellations and simplicial Delaunay mosaics.

5 Complementing Subcomplexes

The main new concept in this section, is the channel between complementing sub-
complexes of the Voronoi tessellation and the Delaunay mosaic. This channel acts like
a buffer between the complexes, not unlike the buffer used in the standard proof of
Alexander duality [18].

5.1 Sub- and Superlevel Sets

Observe that for del and sdx, the value of a cell is larger than or equal to the values
of its faces, and for vor and sdn, it is less than or equal to the values of its faces. It
follows that the following sub- and superlevel sets are complexes:

Vort (B) = vor−1[t,∞), Delt (B) = del−1(−∞, t],
Sdt (B) = sdn−1[t,∞), Sdt (B) = sdx−1(−∞, t].

We extend (8) and (9) from the continuous to the discrete setting.

Lemma 5.1 (nested spaces) Let B ⊆ R
d × R be a Delone set of weighted points.

Then |Delt (B)| ⊆ |Sdt (B)| and |Vort (B)| ⊆ |Sdt (B)|.
Proof Recall the functions sdv,sdd : Sd(B) → R introduced at the end of Sect. 4.1.
By construction, the underlying spaces of their sub- and superlevel sets agreewith those
of vor and del. In particular, |sdd−1(−∞, t]| = |Delt (B)| and |sdv−1[t,∞)| =
|Vort (B)|. By Lemma 3.1, we have

sdd(γ ) ≥ sdx(γ ) ≥ sdn(γ ) ≥ sdv(γ ), (16)

for every γ ∈ Sd(B). From this it follows that sdd−1(−∞, t] ⊆ sdx−1(−∞, t] and
sdv−1[t,∞) ⊆ sdn−1[t,∞). The sequence of inequalities in (16) thus imply the
two claimed containment relations. ��
Let t ∈ R be a value different from sd(x) for all vertices x of Sd(B). Then Sdt (B) ∩
Sdt (B) = ∅, and similarly their underlying spaces are disjoint. Combining the two
relations in Lemma 5.1, we therefore have |Delt (B)| ∩ |Vort (B)| = ∅, which we
illustrate in Fig. 8. On the other hand, if t is the value of a vertex, x , then x belongs to
Sdt (B) as well as to Sdt (B). If x is furthermore a critical point of sd, then x belongs
also to |Delt (B)| and to |Vort (B)|.
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Fig. 8 Complementing subcomplexes of the Voronoi tessellation, in orange, and the Delaunay mosaic, in
blue. The complexes are constructed for a non-critical value of t , for which their underlying spaces are
disjoint

5.2 Channel

Since the sub- and superlevel sets of del and vor considered in Lemma 5.1 have
disjoint underlying spaces, it makes sense to study the space in between. For each
value t ∈ R, this is the underlying space of an open collection of cells in the common
subdivision of the tessellation and the mosaic. For each cell γ = τ ∩σ ∗ in Sd(B), the
relevant values are

t0(γ ) = sdv(γ ) = vor(τ ), t1(γ ) = sdd(γ ) = del(σ ∗).

Moving t from −∞ to ∞ along the real numbers, τ is dropped from Vort (B) at
t = t0(γ ) and σ ∗ is added to Delt (B) at t = t1(γ ). If τ is a critical cell of vor
and σ ∗ = τ ∗ is the corresponding critical cell of del, then vor(τ ) = del(σ ∗)
by Theorem 4.2. Furthermore, γ is a point that belongs to both underlying spaces at
t = t0(γ ) = t1(γ ), and to exactly one of these underlying spaces for all other values
of t . For all other cells γ = τ ∩ σ ∗, Lemma 5.1 implies t0(γ ) < t1(γ ). We therefore
define the channel of B at t as

Cht (B) = {γ = τ ∩ σ ∗ | τ /∈ Vort (B), σ ∗ /∈ Delt (B)};

see Fig. 9. This is the complement of the union of two subcomplexes of Sd(B) or,
equivalently, the intersection of two open sets:

Cht (B) = Sd(B) \ [
sdd−1(−∞, t] ∪ sdv−1[t,∞)

]

= sdd−1(t,∞) ∩ sdv−1(−∞, t).

Recall that sdd(γ ) is at least the maximum and sdv(γ ) is at most the minimum sd(x)
over all points x ∈ γ . It follows that sd−1(t) is disjoint of the underlying spaces of
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Fig. 9 The channel decomposed into cells of the common subdivision of the Voronoi tessellation and the
Delaunay mosaic, with the two complementing subcomplexes forming the white background. In black, we
superimpose the level set of sd for the value of t that splits the channel into two

sdd−1(−∞, t] and sdv−1[t,∞), unless t is a critical value of sd, in which case the
corresponding critical points belong to all three. Hence, sd−1(t) is contained in the
underlying space of the channel, unless t is a critical value, in which case the level set
passes through the corresponding critical points. We state this insight together with a
related property more formally.

Lemma 5.2 (split channel) Let B ⊆ R
d ×R be a Delone set of weighted points, and

let t ∈ R be a non-critical value of sd. Then

(i) sd−1(t) ⊆ |Cht (B)|,
(ii) sd−1(t) is an orientable (d − 1)-manifold.

To see (ii), we observe that sd−1(t) is (d − 1)-dimensional by construction, and it
does not bifurcate because t is a non-critical value. Finally Delt (B) is on one side and
Vort (B) is on the other, so the manifold is orientable. If however t is a critical value of
sd, then both (i) and (ii) are violated, but only at the corresponding critical points. At
these points, the level set and the channel both go through topological reorganization.

5.3 Migration Through Channel

For every non-critical value t ∈ R, we have a partition of Rd into Vort (B), Delt (B),
and Cht (B). We are interested in the evolution of this partition as t goes from −∞
to∞. It is convenient to study the corresponding partition of the common subdivision:

Sd(B) = sdd−1(−∞, t] � Cht (B) � sdv−1[t,∞). (17)

To get finite rank homology groups, we limit ourselves to periodic sets of weighted
points. As introduced in Sect. 2, such a set is of the form B = A + (Zd × 0),
in which A ⊆ [0, 1)d × R is finite with injective projection to [0, 1)d . Since B is

123



Discrete & Computational Geometry

periodic, so are the functions and their sub- and superlevel sets introduced in this
paper. In particular, Sd(B) is periodic and so are the three sets on the right-hand side
of (17). We can therefore interpret sdd−1(−∞, t] and sdv−1[t,∞) as complexes
geometrically realized in the d-dimensional torus obtained by gluing opposite facets
of [0, 1]d . These complexes are finite, with well-defined homology groups of finite
rank:

H p(Vor
t (B)) = H p(sdv

−1[t,∞)), H p(Delt (B)) = H p(sdd
−1(−∞, t]),

for every dimension, p, and every value, t . It will not be important which coefficient
group is used, so we make the simplest choice, which is Z/2Z. The ranks of the
homology groups are the Betti numbers, denoted βp = rank H p.

For sufficiently small t , only one set on the right-hand side of (17) is non-empty,
namely sdv−1(−∞,∞) = Sd(B). Its underlying space is the d-dimensional torus,
which has Betti numbers βp = (d

p

)
for 0 ≤ p ≤ d. Step by step, the cells migrate

first into the channel and second to the sublevel set of sdd. For sufficiently large t ,
the migration is complete, and the only non-empty set on the right-hand side of (17)
is sdd−1(−∞,∞) = Sd(B). Indeed, every change is the migration of a step of sdv
to the channel or the migration of a step of sdd from the channel. The non-critical
steps do not affect the homology of the sets, so we focus on the critical steps.

5.4 Migration of Non-Critical Cells

To understand the homology of the migration, we consider the ordered boundary
matrix of Del(B) and its reduced version. To define this matrix, we arrange the cells
of Del(B) in non-decreasing order of del, making sure that the cells in a step appear
in sequence and in non-decreasing order of dimension. Each cell corresponds to a
row and a column of the ordered boundary matrix, ∂ , with the rows ordered from
top to bottom and the columns from left to right. Following the standard approach
to constructing persistent homology, we reduce the matrix using left-to-right column
additions. Calling the lowest non-zero element in a column its pivot, the goal of the
reduction algorithm is to move the pivots as high as possible, or even remove them
by zeroing out entire columns. The matrix is reduced if every row contains at most
one pivot. As proved in [3], the reduced matrix is not unique, but its pivots are; that
is: they do not depend on which columns are added in what order, as long as they are
added from left to right. Let R be a reduced matrix obtained from ∂ , and write ∂

j
i for

the bottom left submatrix obtained from ∂ by removing the first i − 1 rows from the
first j columns. Define

r∂ [i, j] = rank ∂
j
i − rank ∂

j
i+1 + rank ∂

j−1
i+1 − rank ∂

j−1
i , (18)

and observe that R[i, j] is a pivot iff r∂ [i, j] = 1; see the proof of [3, Pairing Unique-
ness Lemma]. This motivates us to call ∂ [i, j] a pivot if r∂ [i, j] = 1, knowing that
this relation predicts the special role of the pair σ, τ , in which σ is the row and τ is the
column of the pivot. Indeed, whenwe add the cells in sequence, σ gives birth to a cycle,
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k + 1
k

k k
+

1
Fig. 10 Removing rows k, k + 1 and columns k, k + 1 decreases the rank of the lower left submatrices
whose upper right corners lie in the shaded quadrant. The blue elements are discussed in the proof

and τ gives death to this same cycle. Specifically, if σ is a q-cell and τ is a (q+1)-cell,
then their addition to the Delaunay subcomplex first increases and then decreases the
q-th Betti number by one. We call these cells non-essential because they affect the
homology groups only temporarily. An essential cell gives birth to a cycle that does
not die. We recognize essential cells by noticing that neither its row nor its column in
the reduced matrix contains a pivot. We are also interested in recognizing non-critical
cells, which belong to steps of size at least 2. By Lemma 2.2, we may assume that all
such steps have size exactly 2. Let σ, τ be such a pair, let q = dim σ = dim τ − 1,
and suppose the two cells correspond to rows k, k + 1 and to columns k, k + 1 in the
ordered boundary matrix. In the reduced matrix, column k is zero and R[k, k + 1]
is the pivot of column k + 1. Since all elements in the diagonal or below are 0, this
implies r∂ [k, k + 1] = rank ∂k+1

k = 1. This can also happen for two critical cells, but
only paired non-critical cells satisfy del(σ ) = del(τ ).

Lemma 5.3 (removing non-critical pairs) Let ∂ be an ordered boundary matrix such
that rows k, k + 1 and columns k, k + 1 correspond to a pair of non-critical cells.
Then removing the two rows and two columns does not affect the pivot structure of the
matrix.

Proof By definition of pair, R[k, k + 1] is the pivot of column k + 1, and there is
no pivot in column k and row k + 1. The removal of the two rows and two columns
decreases rank ∂

j
i by 1, if i < k or j > k + 1, and leaves it unchanged, otherwise.

Hence, rδ[i, j] remains unchanged, except possibly if i = k − 1 or j = k + 2. We
prove that it remains unchanged even in those cases.

Consider first the case i < k−1 and j = k+2 illustrated inFig. 10. Independently of
whether or not there is a pivot in positions 1 through k−1 of row i , we have rank ∂k+1

i −
rank ∂k+1

i+1 = rank ∂k−1
i − rank ∂k−1

i+1 , which implies that the status of ∂[i, j] remains
unchanged. The case i = k − 1 and j > k + 2 is symmetric. Consider second the
case i = k − 1 and j = k + 2, and note that rank ∂

j−1
i = rank ∂

j
i+1 = rank ∂

j−1
i+1 = 1,
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because the upper right corners of all three submatrices are close to the diagonal, which
eliminates the possibility of further pivots interfering with these relations. Hence,
rank ∂

j
i = 1 gives r∂ [i, j] = 0 and rank ∂

j
i = 2 gives r∂ [i, j] = 1. After removing

the two rows and two columns, the alternating sum for i, j is rank ∂
j
i − 1, because the

other three submatrices are all 0. This is the same as before. ��

5.5 Migration of Critical Cells

The main result of this section is the complete description of the Betti numbers of
the Voronoi and Delaunay subcomplexes during migration. In particular, we show
that the two subcomplexes change synchronously but differently for essential and for
non-essential critical cells. Non-critical cells come in steps of size at least 2 and do
not affect the homology of the subcomplexes. To state the result formally, assume that
the critical cells of del have distinct values, t1 < t2 < . . . < tm , write σi ∈ Del(B)

for the critical cell with del(σi ) = ti , and recall that σ ∗
i ∈ Vor(B) is the critical cell

with vor(σ ∗
i ) = ti . Furthermore, write Di and Vi for the subcomplexes of Del(B)

and Vor(B) after processing the respective i-th critical cells. We will see shortly that
σi is essential for del iff σ ∗

i is essential for vor.

Case 1:σi andσ ∗
i are non-essential critical cells ofdel andvor, with dimensions

q = dim σi and p = d − q = dim σ ∗
i . Then

βp−1(Vi ) − βp−1(Vi−1) = βq(Di ) − βq(Di−1) = 1, or (19)

βp(Vi ) − βp(Vi−1) = βq−1(Di ) − βq−1(Di−1) = −1, (20)

while all other Betti numbers remain unchanged.
Case 2: σi and σ ∗

i are essential critical cells of del and vor, again with dimen-
sions q + p = d. Then

βp(Vi−1) − βp(Vi ) = βq(Di ) − βq(Di−1) = 1, (21)

while all other Betti numbers remain unchanged.

This case analysis needs an argument, which we will provide as part of the proof
of the summary of its consequences. In the statement, we distinguish between the
essential and the non-essential homology of a complex in the d-dimensional torus,
writing βq = βess

q +βness
q . With reference to the reduced boundary matrix in Sect. 5.4,

we recall that βess
q is the number of essential q-cells in the complex, and βness

q is the
number of non-essential critical q-cells in the complex that form pivots with (q + 1)-
cells that are not yet in the complex; see also [2] where essential and non-essential
homology is recorded in separate parts of the extended persistence diagram.

Theorem 5.4 (synchronous de-construction) Let B ⊆ R
d × R be a periodic set of

weighted points, let t ∈ R be a non-critical value of del and vor, and recall that
Delt (B) = del−1(−∞, t] and Vort (B) = vor−1[t,∞). Then

βness
q (Delt (B)) − βness

p−1(Vor
t (B)) = 0, (22)
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βess
q (Delt (B)) + βess

p (Vort (B)) =
(
d

p

)
, (23)

for all q + p = d.

Proof At the core of the argument are two different but similar ordered boundary
matrices. The first is the matrix ∂ introduced in Sect. 5.4, which orders the Delaunay
cells by del, and the second is the matrix ∂ ′, which orders the Voronoi cells by vor.
The boundary matrix of Delt (B) is an upper left square submatrix of ∂ , and that of
Vort (B) is a lower right square submatrix of ∂ ′. By Theorem 4.2, the two matrices
contain the critical cells in the same order, soσi ∈ Delt (B) iff σ ∗

i ∈ Vort (B). However,
the two matrices differ by the organization of the non-critical cells into steps filling
up the gaps between the critical cells. We claim that this difference does not affect
the pivot structure, which is therefore the same for both matrices. More precisely, we
claim that

1. critical cells, σi and σ j , define a pivot in ∂ iff σ ∗
i , σ ∗

j define a pivot in ∂ ′,
2. σi is an essential critical cell of del iff σ ∗

i is an essential critical cell of vor.

To see that the pivot structure is the same for both matrices, we recall that an element
is a pivot iff the alternating sum in (18) evaluates to 1. By Lemma 2.2, we may assume
that the steps of non-critical cells are pairs. Suppose the cells at position k, k + 1 form
such a pair. As proved in Lemma 5.3, we can remove rows k, k + 1 and columns
k, k + 1 without affecting the pivot structure. More generally, we can remove all such
pairs of del from ∂ and then insert the pairs of vor to get ∂ ′. To finally compare
Delt (B)with Vort (B), we note that reducing an ordered boundary matrix with left-to-
right column additions gives the same pivot structure as reducing it with bottom-to-top
row additions. Equivalently, we may flip ∂ ′ along the minor diagonal and use column
operations to reduce it, as for ∂ . Indeed, flipping the matrix maintains the alternating
sums (18), so it does not affect the pivot structure.

To transition from Di−1 to Di , we add a non-negative number of pairs of non-
critical cells as well as the critical cell σi , and to transition from Vi−1 to Vi in parallel,
we remove a non-negative number of pairs of non-critical cells as well as the critical
cell σ ∗

i . Letting q = dim σi , we distinguish three cases:

Case 1.a: σi is the row of a pivot. Then σi gives birth to a q-cycle. Flipping
the matrix reverses birth and death of pivots. Hence, adding σ ∗

i to Vi would give
death to a (p − 1)-cycle, but since we remove it from Vi−1, it gives birth to this
(p− 1)-cycle. Hence, βq(Di ) = βq(Di−1) + 1 and βp−1(Vi ) = βp−1(Vi−1) + 1,
as stated in (19).

Case 1.b: σi is the column of a pivot. Then σi gives death to a (q − 1)-cycle and
σ ∗
i gives death to a p-cycle. Hence, βq−1(Di ) = βq−1(Di−1) − 1 and βp(Vi ) =

βp(Vi−1) − 1, as stated in (20).

Case 2.: σi is an essential q-cell of vor. Since neither the corresponding row nor
the corresponding column of ∂ contains a pivot, this implies that σ ∗

i is an essential
p-cell of del. Adding σi and removing σ ∗

i thus implies βq(Di ) = βq(Di−1) + 1
and βp(Vi ) = βp(Vi−1) − 1, as stated in (21).
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Relations (22) and (23) connecting the Betti numbers of Delt (B) and Vort (B) hold for
sufficiently small t , when βess

q (D0) = βness
q (D0) = 0, for all q, while βess

p (V0) = (d
p

)
,

βness
p (V0) = 0, for all p. The migration of non-critical cells does not affect the Betti

numbers, and the migration of critical cells maintains the two relations, as argued
above. ��

6 Discussion

Motivated by challenges caused by data in non-general position, this paper explores
the continuous and discrete functions that define Voronoi tessellations and Delaunay
mosaics. Beyond the concrete results formulated as lemmas and theorems, wemention
the homological extension of key concepts in discrete Morse theory as one of the main
contributions of this paper. In the process of gaining new insights into an old subject,
we encountered questions we have not been able to answer:

– The piecewise linear sd : Rd → R can be defined for sets B,C ⊆ R
d ×R that do

not satisfy the polar relationship assumed in this paper. What are the properties of
sd in this more general setting?

– In R
3, the union of balls is a popular model of a molecule [15], albeit in prac-

tice easier to compute and easier to display PL surfaces are preferred. These do
generally not have the homotopy type of the boundary of the union of balls. The
level set of sd : R3 → R suggests itself as an easy to use yet topologically correct
alternative. What are its combinatorial and geometric properties, and how fast can
they be computed?

– We prove in this paper that Vort (B) and Delt (B) satisfy relations akin to the
Alexander duality of complementary spaces on the sphere. Can the same results
be obtained with discreteMorse theory type arguments, eg. by comparing the steps
of del and vor?

The discrete functions defined in this paper gives rise to a one-parameter family of
complementing complexes. It would be interesting to connect these families to appli-
cations, such as the study of Raleigh–Bénard convectionwith its family of bi-partitions
of space [14].
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(a) Preimages of continuous functions. (b) Preimages of discrete functions.

(c) Channel split by level set. (d) Levels of piecewise linear function.

Fig. 11 Four pictures of a decomposition of the plane into “land” and “water”. All four geometric structures
are for the same value of t : (a) sub-, super-, and level sets of three continuous functions; (b) sub- and
superlevel sets of discrete functions on the Voronoi tessellation and the Delaunay mosaic; (c) channel
subdivided by Voronoi tessellation and Delaunay mosaic, and split by level set of piecewise linear function;
(d) level sets of piecewise linear function, with square boxes marking the neighborhoods of a non-critical
point, a minimum, a saddle, and a maximum; see also Fig. 7

Appendix A: Juxtaposition of Geometric Structures

This appendix illustrates the various continuous and discrete geometric concepts
introduced in this paper for a random set of points in the plane. Figure 11 shows
a (non-periodic) square cutout of the structures. The local neighborhoods of a regular
point and the three types of simple critical points shown in Fig. 7 can be found in
panel (d). The reader is encouraged to locate these neighborhoods in the other three
panel to get a feeling for the relationship between the geometric structures.
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